spark streaming中的广播变量应用

2024-06-16 19:58

本文主要是介绍spark streaming中的广播变量应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 广播变量

我们知道spark 的广播变量允许缓存一个只读的变量在每台机器上面,而不是每个任务保存一份拷贝。常见于spark在一些全局统计的场景中应用。通过广播变量,能够以一种更有效率的方式将一个大数据量输入集合的副本分配给每个节点。Spark也尝试着利用有效的广播算法去分配广播变量,以减少通信的成本。 
一个广播变量可以通过调用SparkContext.broadcast(v)方法从一个初始变量v中创建。广播变量是v的一个包装变量,它的值可以通过value方法访问,下面的代码说明了这个过程:

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)

2. Spark Streaming 广播变量的更新

广播变量的声明很简单,调用broadcast就能搞定,并且scala中一切可序列化的对象都是可以进行广播的,这就给了我们很大的想象空间,可以利用广播变量将一些经常访问的大变量进行广播,而不是每个任务保存一份,这样可以减少资源上的浪费。

但是,现在项目中遇到一种这样的需求,用spark streaming 通过一些离线全局更新好的数据对用户进行实时推荐(当然这里基于一些spark streaming的内部机制,不能实现真正的时效性):(1)日志流通过kafka获取 (2) 解析日志流数据,融合离线的全局数据,对每个Dtream进行计算(3)计算结果最后发送到redis中。

其中就会涉及这样的问题:(1)离线全局的数据是需要全局获取的,不能局部进行计算 (2)这部分数据是离线定期更新的,而spark streaming一旦开始,就长时间运行。如果离线数据更新了,如何在开始的流计算中,获取到这部分更新后的数据。

针对上述问题,我们可以直接想的一种方法是,在driver端开启一个附属线程,周期性去获取离线的全局数据,然后通过diver分发到各个task中。但是考虑到这种方式:spark streaming整体的性能开销会很大,并且重新开启的后台线程的不易管理。结合spark中的广播变量,我们采用另一种方式来解决以上问题: 
1> spark中的广播变量是只读的,通过unpersist函数,可以内存中的相关序列化对象 
2> 通过Dstream的foreachRDD方法,做到定时更新 (官网上有说明,该方法是在driver端执行的)


import java.io.{ObjectInputStream, ObjectOutputStream}
import com.bf.dt.wireless.config.WirelessConfig
import com.bf.dt.wireless.formator.WirelessFormator
import com.bf.dt.wireless.storage.MysqlConnectionPool
import com.bf.dt.wireless.utils.DateUtils
import kafka.serializer.StringDecoder
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.json4s._
import org.slf4j.LoggerFactory
import scala.collection.mutableobject WirelessLogAnalysis {object BroadcastWrapper {@volatile private var instance: Broadcast[Map[String, List[String]]] = nullprivate val map = mutable.LinkedHashMap[String, List[String]]()def getMysql(): Map[String, List[String]] = {//1.获取mysql连接池的一个连接val conn = MysqlConnectionPool.getConnection.get//2.查询新的数据val sql = "select aid_type,aids from cf_similarity"val ps = conn.prepareStatement(sql)val rs = ps.executeQuery()while (rs.next()) {val aid = rs.getString("aid_type")val aids = rs.getString("aids").split(",").toListmap += (aid -> aids)}//3.连接池回收连接MysqlConnectionPool.closeConnection(conn)map.toMap}def update(sc: SparkContext, blocking: Boolean = false): Unit = {if (instance != null)instance.unpersist(blocking)instance = sc.broadcast(getMysql())}def getInstance(sc: SparkContext): Broadcast[Map[String, List[String]]] = {if (instance == null) {synchronized {if (instance == null) {instance = sc.broadcast(getMysql)}}}instance}private def writeObject(out: ObjectOutputStream): Unit = {out.writeObject(instance)}private def readObject(in: ObjectInputStream): Unit = {instance = in.readObject().asInstanceOf[Broadcast[Map[String, List[String]]]]}}def main(args: Array[String]): Unit = {val logger = LoggerFactory.getLogger(this.getClass)val conf = new SparkConf().setAppName("wirelessLogAnalysis")val ssc = new StreamingContext(conf, Seconds(10))val kafkaConfig: Map[String, String] = Map("metadata.broker.list" -> WirelessConfig.getConf.get.getString("wireless.metadata.broker.list"),"group.id" -> WirelessConfig.getConf.get.getString("wireless.group.id"),"zookeeper.connect" -> WirelessConfig.getConf.get.getString("wireless.zookeeper.connect"),"auto.offset.reset" -> WirelessConfig.getConf.get.getString("wireless.auto.offset.reset"))val androidvvTopic = WirelessConfig.getConf.get.getString("wireless.topic1")val iphonevvToplic = WirelessConfig.getConf.get.getString("wireless.topic2")val kafkaDStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc,kafkaConfig,Set(androidvvTopic, iphonevvToplic))//原始日志流打印kafkaDStream.print()val jsonDstream = kafkaDStream.map(x =>//解析日志流WirelessFormator.format(x._2))//解密的日志流打印jsonDstream.print()jsonDstream.foreachRDD {rdd => {// driver端运行,涉及操作:广播变量的初始化和更新// 可以自定义更新时间if ((DateUtils.getNowTime().split(" ")(1) >= "08:00:00") && (DateUtils.getNowTime().split(" ")(1) <= "10:10:00")) {BroadcastWrapper.update(rdd.sparkContext, true)println("广播变量更新成功: " + DateUtils.getNowTime())}//worker端运行,涉及操作:Dstream数据的处理和Redis更新rdd.foreachPartition {partitionRecords =>//1.获取redis连接,保证每个partition建立一次连接,避免每个记录建立/关闭连接的性能消耗partitionRecords.foreach(record => {//2.处理日志流val uid = record._1val aid_type = record._2 + "_" + record._3if (cf.value.keySet.contains(aid_type)) {(uid, cf.value.get(aid_type))println((uid, cf.value.get(aid_type)))}else(uid, "-1")}//3.redis更新数据)//4.关闭redis连接}}}ssc.start()ssc.awaitTermination()}
}

说明:以上是无线推荐项目中部分代码,其中离线全局数据存储在mysql中,MysqlConnectionPool是mysql连接池定义类,WirelessFormator是日志解密的定义类

这篇关于spark streaming中的广播变量应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067403

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布