【招联消费金融股份】有限公司2024年5月18日【算法开发岗暑期实习】一面试经验分享

本文主要是介绍【招联消费金融股份】有限公司2024年5月18日【算法开发岗暑期实习】一面试经验分享,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

招联消费金融股份有限公司2024年5月18日面试经验分享

  • 面试流程:共30多分钟,先3分钟自我介绍,然后细细介绍简历上面的论文和实习信息。
    • 问题1:扩散模型的noise schedule有什么研究。
    • 问题2:有哪些常见的数学分布
    • 问题3:用过哪些优化器,详细介绍一下特点和策越,为什么好?
    • 问题4:详细介绍LORA,对于不同秩的对比实验设置有没有了解,优势是什么,如何初始化的?
    • 问题5:介绍minhash算法的实现
    • 问题6:特征提取器用过哪些,介绍一下。
    • 问题7:transformer介绍一下架构,QKV机制。
    • 问题8:python与c++的源层面上的不同,比如python的GIL,深拷贝和浅拷贝。python是静态语言还是动态语言,pytorch的神经网络是静态图还是动态图。
    • 问题9:c++的拷贝构造函数是在什么时候调用的
    • 问题10:对于传统的机器学习方法有没有了解,决策树和聚类(k-means),介绍k-means的特点,类别数量是模型学习的还是人为定义的?每个类里面是假设符合什么分布?
    • 问题11:介绍强化学习DP,蒙特卡洛法和dt算法。
    • 问题12:线性代数,介绍特征值和特征向量。
    • 问题13:介绍P-Tunig和P-Tuningv2
    • 问题14:介绍ChatGLM、LLAMA。

面试流程:共30多分钟,先3分钟自我介绍,然后细细介绍简历上面的论文和实习信息。

问题1:扩散模型的noise schedule有什么研究。

从0.0001到0.02有linear,cosine,sqrt_linear,sqrt

def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):if schedule == "linear":betas = (torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2)elif schedule == "cosine":timesteps = (torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s)alphas = timesteps / (1 + cosine_s) * np.pi / 2alphas = torch.cos(alphas).pow(2)alphas = alphas / alphas[0]betas = 1 - alphas[1:] / alphas[:-1]betas = np.clip(betas, a_min=0, a_max=0.999)elif schedule == "sqrt_linear":betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)elif schedule == "sqrt":betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5else:raise ValueError(f"schedule '{schedule}' unknown.")return betas.numpy()

问题2:有哪些常见的数学分布

'离散分布'二项分布 (Binomial Distribution)用途: 用于描述在n次独立试验中成功的次数,每次试验成功的概率为p。
参数: n(试验次数),p(成功的概率)。
例子: 抛硬币n次,统计正面朝上的次数。泊松分布 (Poisson Distribution)用途: 用于描述在固定时间或空间内某事件发生的次数。
参数: λ(单位时间或空间内事件的平均发生率)。
例子: 每小时顾客到达商店的次数。几何分布 (Geometric Distribution)用途: 用于描述第一次成功之前需要的失败次数。
参数: p(每次试验成功的概率)。
例子: 抛硬币直到第一次出现正面。'连续分布'正态分布 (Normal Distribution)用途: 用于描述许多自然现象和测量数据。
参数: μ(均值),σ²(方差)。
例子: 人的身高、考试成绩等。指数分布 (Exponential Distribution)用途: 用于描述时间间隔或寿命。
参数: λ(事件发生的速率)。
例子: 机器的故障时间。均匀分布 (Uniform Distribution)用途: 用于描述在一定范围内每个值都有相同概率的情况。
参数: a(最小值),b(最大值)。
例子: 随机生成的密码。卡方分布 (Chi-Square Distribution)用途: 用于检验样本方差和假设方差的差异。
参数: k(自由度)。
例子: 假设检验中的卡方检验。t分布 (Student's t-Distribution)用途: 用于小样本的均值推断和假设检验。
参数: ν(自由度)。
例子: 小样本的均值检验。'其他分布'贝塔分布 (Beta Distribution)用途: 用于描述概率的分布。
参数: α和β(形状参数)。
例子: 用于贝叶斯统计中的先验分布。伽玛分布 (Gamma Distribution)用途: 用于描述等待时间。
参数: k(形状参数),θ(尺度参数)。
例子: 处理时间、服务时间分布。

问题3:用过哪些优化器,详细介绍一下特点和策越,为什么好?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Adam及其变种:结合动量和自适应学习率,快速稳定收敛,适用于大多数深度学习任务。

AdamW 是 Adam 优化器的改进版本,旨在解决 Adam 优化器在某些情况下会导致权重衰减(weight decay)效果不佳的问题。AdamW 是由 Ilya Loshchilov 和 Frank Hutter 提出的,并在他们的论文《Decoupled Weight Decay Regularization》中详细介绍。
在这里插入图片描述
在这里插入图片描述

AdamW 是一种改进的 Adam 优化器,通过将权重衰减与梯度更新分离,提供了更好的正则化效果和更快的收敛速度。它在许多深度学习任务中表现优异,是现代深度学习中常用的优化器之一。

问题4:详细介绍LORA,对于不同秩的对比实验设置有没有了解,优势是什么,如何初始化的?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

问题5:介绍minhash算法的实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

问题6:特征提取器用过哪些,介绍一下。

很多,比如人脸身份信息的特征提取器,Arcface, Cosface, blendface等等。GAN和VQVAE的图像编码器等Autoencoders。
Word2Vec
PCA
SIFT(尺度不变特征变换)(Scale-Invariant Feature Transform)
TF-IDF(Term Frequency-Inverse Document Frequency)(词频-逆文档频率)

问题7:transformer介绍一下架构,QKV机制。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

问题8:python与c++的源层面上的不同,比如python的GIL,深拷贝和浅拷贝。python是静态语言还是动态语言,pytorch的神经网络是静态图还是动态图。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

问题9:c++的拷贝构造函数是在什么时候调用的

在这里插入图片描述
在这里插入图片描述

问题10:对于传统的机器学习方法有没有了解,决策树和聚类(k-means),介绍k-means的特点,类别数量是模型学习的还是人为定义的?每个类里面是假设符合什么分布?

在这里插入图片描述
在这里插入图片描述
下面是 K-Means 算法的伪代码表示:

输入:数据集 X,簇数量 K
输出:簇分配结果(cluster_assignment),簇中心(centroids)1. 初始化簇中心 centroids
2. 迭代优化:重复执行以下步骤,直到满足停止条件:a. 簇分配:对每个数据点 x 属于 X:计算 x 与所有 centroids 的距离,选择最近的簇中心所属的簇作为 x 的簇分配结果 cluster_assignment[x]b. 簇中心更新:对每个簇 c 属于 K:计算 c 中所有数据点的均值向量作为新的簇中心 centroids[c]停止条件:
- 达到最大迭代次数
- 簇中心不再变化(收敛)
- 其他停止条件

需要注意的是,K-Means 算法的结果可能会受到初始簇中心的影响,不同的初始值可能导致不同的聚类结果。因此,通常会多次运行算法,选择最优的聚类结果作为最终输出。

问题11:介绍强化学习DP,蒙特卡洛法和dt算法。

在这里插入图片描述
比较与应用

  • DP 适用于确定性环境下的最优化问题,但需要完整的环境模型。
  • 蒙特卡洛方法不需要环境模型,但需要大量的采样轨迹来进行值函数估计。
  • TD 算法结合了增量学习和模型无关的特点,适用于需要实时学习和模型不完全的情况。

在实际应用中,这些方法可以根据问题的特点结合使用,例如在强化学习中使用 DP 进行价值函数的初始化和策略改进,结合蒙特卡洛方法进行策略评估,或者使用 TD 算法进行增量学习和实时更新。

问题12:线性代数,介绍特征值和特征向量。

在这里插入图片描述

问题13:介绍P-Tunig和P-Tuningv2

在这里插入图片描述

问题14:介绍ChatGLM、LLAMA。

在这里插入图片描述
在这里插入图片描述


创作不易,观众老爷们请留步… 动起可爱的小手,点个赞再走呗 (๑◕ܫ←๑)
欢迎大家关注笔者,你的关注是我持续更博的最大动力


原创文章,转载告知,盗版必究



在这里插入图片描述


在这里插入图片描述
♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠ ⊕ ♠

这篇关于【招联消费金融股份】有限公司2024年5月18日【算法开发岗暑期实习】一面试经验分享的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067311

相关文章

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经