卡尔曼滤波源码注释和调用示例

2024-06-16 16:28

本文主要是介绍卡尔曼滤波源码注释和调用示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

卡尔曼滤波源码注释和调用示例

flyfish

Python版本代码地址
C++版代码地址

主要用于分析代码,增加了中文注释

import numpy as np
import scipy.linalg"""
0.95分位数的卡方分布表,N自由度(包含N=1到9的值)。
取自MATLAB/Octave的chi2inv函数,用作Mahalanobis门限。
"""
chi2inv95 = {1: 3.8415,2: 5.9915,3: 7.8147,4: 9.4877,5: 11.070,6: 12.592,7: 14.067,8: 15.507,9: 16.919
}class KalmanFilter(object):"""一个用于图像空间中跟踪边界框的简单卡尔曼滤波器。8维状态空间x, y, a, h, vx, vy, va, vh包含边界框中心位置 (x, y)、长宽比 a、高度 h 及其相应的速度。对象运动遵循恒定速度模型。边界框位置 (x, y, a, h) 被作为状态空间的直接观测值(线性观测模型)。"""def __init__(self):ndim, dt = 4, 1.# 创建卡尔曼滤波器模型矩阵self._motion_mat = np.eye(2 * ndim, 2 * ndim)for i in range(ndim):self._motion_mat[i, ndim + i] = dtself._update_mat = np.eye(ndim, 2 * ndim)# 运动和观测不确定性相对于当前状态估计进行选择。这些权重控制模型中的不确定性量。这有点hacky。self._std_weight_position = 1. / 20self._std_weight_velocity = 1. / 160def initiate(self, measurement):"""从未关联的测量创建跟踪。参数----------measurement : ndarray边界框坐标 (x, y, a, h) 包含中心位置 (x, y)、长宽比 a 和高度 h。返回值-------(ndarray, ndarray)返回新跟踪的均值向量(8维)和协方差矩阵(8x8维)。"""mean_pos = measurementmean_vel = np.zeros_like(mean_pos)mean = np.r_[mean_pos, mean_vel]std = [2 * self._std_weight_position * measurement[3],2 * self._std_weight_position * measurement[3],1e-2,2 * self._std_weight_position * measurement[3],10 * self._std_weight_velocity * measurement[3],10 * self._std_weight_velocity * measurement[3],1e-5,10 * self._std_weight_velocity * measurement[3]]covariance = np.diag(np.square(std))return mean, covariancedef predict(self, mean, covariance):"""基于模型预测下一状态。参数----------mean : ndarray当前状态的均值向量(8维)。covariance : ndarray当前状态的协方差矩阵(8x8维)。返回值-------(ndarray, ndarray)返回预测的均值向量和协方差矩阵。"""std_pos = [self._std_weight_position * mean[3],self._std_weight_position * mean[3],1e-2,self._std_weight_position * mean[3]]std_vel = [self._std_weight_velocity * mean[3],self._std_weight_velocity * mean[3],1e-5,self._std_weight_velocity * mean[3]]motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))mean = np.dot(self._motion_mat, mean)covariance = np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_covreturn mean, covariancedef project(self, mean, covariance):"""将状态分布(均值和协方差)投影到观测空间。参数----------mean : ndarray状态分布的均值向量(8维)。covariance : ndarray状态分布的协方差矩阵(8x8维)。返回值-------(ndarray, ndarray)返回观测空间中的均值向量(4维)和协方差矩阵(4x4维)。"""std = [self._std_weight_position * mean[3],self._std_weight_position * mean[3],1e-1,self._std_weight_position * mean[3]]innovation_cov = np.diag(np.square(std))mean = np.dot(self._update_mat, mean)covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T))return mean, covariance + innovation_covdef update(self, mean, covariance, measurement):"""使用观测值更新状态分布。参数----------mean : ndarray先验状态分布的均值向量(8维)。covariance : ndarray先验状态分布的协方差矩阵(8x8维)。measurement : ndarray当前观测到的边界框坐标 (x, y, a, h)。返回值-------(ndarray, ndarray)更新后的状态分布的均值向量和协方差矩阵。"""projected_mean, projected_cov = self.project(mean, covariance)chol_factor, lower = scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False)kalman_gain = scipy.linalg.cho_solve((chol_factor, lower),np.dot(covariance, self._update_mat.T).T, check_finite=False).Tinnovation = measurement - projected_meannew_mean = mean + np.dot(innovation, kalman_gain.T)new_covariance = covariance - np.linalg.multi_dot((kalman_gain, projected_cov, kalman_gain.T))return new_mean, new_covariancedef gating_distance(self, mean, covariance, measurements, only_position=False):"""计算状态分布和观测值之间的门限距离。可从 `chi2inv95` 中获得合适的距离门限。如果 `only_position` 为 False,则卡方分布有4个自由度,否则为2个。参数----------mean : ndarray状态分布的均值向量(8维)。covariance : ndarray状态分布的协方差矩阵(8x8维)。measurements : ndarrayN×4维矩阵,包含N个观测值,每个观测值的格式为 (x, y, a, h),其中 (x, y) 为边界框中心位置,a 为长宽比,h 为高度。only_position : 可选[bool]如果为True,距离计算仅针对边界框中心位置。返回值-------ndarray返回长度为N的数组,其中第i个元素包含 (mean, covariance) 和 `measurements[i]` 之间的平方Mahalanobis距离。"""mean, covariance = self.project(mean, covariance)if only_position:mean, covariance = mean[:2], covariance[:2, :2]measurements = measurements[:, :2]cholesky_factor = np.linalg.cholesky(covariance)d = measurements - meanz = scipy.linalg.solve_triangular(cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True)squared_maha = np.sum(z * z, axis=0)return squared_maha

调用示例1

import numpy as np
from kalman_filter_cn import KalmanFilterclass KalmanFilterTracker:def __init__(self, initial_measurement):self.kf = KalmanFilter()self.mean, self.covariance = self.kf.initiate(initial_measurement)self.history = [initial_measurement[:2]]  # 只记录位置 (x, y)def predict_and_update(self, measurement):self.mean, self.covariance = self.kf.predict(self.mean, self.covariance)self.mean, self.covariance = self.kf.update(self.mean, self.covariance, measurement)self.history.append(self.mean[:2])  # 只记录位置 (x, y)return self.mean, self.covariance# 示例用法
initial_measurement = np.array([0, 0, 1, 1])
tracker = KalmanFilterTracker(initial_measurement)measurements = [np.array([1, 1, 1, 1]),np.array([2, 2, 1, 1]),np.array([3, 3, 1, 1]),np.array([4, 4, 1, 1]),np.array([5, 5, 1, 1])
]for measurement in measurements:tracker.predict_and_update(measurement)print("History of positions:", tracker.history)
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimationdef animate_kalman_filter(history):fig, ax = plt.subplots()ax.set_xlim(0, 6)ax.set_ylim(0, 6)line, = ax.plot([], [], 'bo-', label='Kalman Filter')true_line, = ax.plot([], [], 'ro--', label='True Path')def init():line.set_data([], [])true_line.set_data([], [])return line, true_linedef update(frame):x_data = [h[0] for h in history[:frame+1]]y_data = [h[1] for h in history[:frame+1]]line.set_data(x_data, y_data)true_x = [i for i in range(len(history))]true_y = [i for i in range(len(history))]true_line.set_data(true_x, true_y)return line, true_lineani = FuncAnimation(fig, update, frames=len(history), init_func=init, blit=True, repeat=True)ani.save('kalman_filter.gif', writer='imagemagick')plt.legend()plt.show()animate_kalman_filter(tracker.history)

在这里插入图片描述

调用示例2

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from kalman_filter_cn import KalmanFilter
from typing import Tupleclass KalmanFilterTracker:def __init__(self, initial_measurement: np.ndarray) -> None:self.kf = KalmanFilter()self.mean, self.covariance = self.kf.initiate(initial_measurement)self.history = [initial_measurement[:2]]  # 只记录位置 (x, y)def predict_and_update(self, measurement: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:self.mean, self.covariance = self.kf.predict(self.mean, self.covariance)self.mean, self.covariance = self.kf.update(self.mean, self.covariance, measurement)self.history.append(self.mean[:2])  # 只记录位置 (x, y)return self.mean, self.covarianceclass KalmanFilterAnimation:def __init__(self, tracker: KalmanFilterTracker, measurements: np.ndarray) -> None:self.tracker = trackerself.measurements = measurementsdef init(self):self.line.set_data([], [])self.true_line.set_data([], [])return self.line, self.true_linedef update(self, frame):x_data = [h[0] for h in self.tracker.history[:frame+1]]y_data = [h[1] for h in self.tracker.history[:frame+1]]self.line.set_data(x_data, y_data)true_x = [m[0] for m in self.measurements[:frame+1]]true_y = [m[1] for m in self.measurements[:frame+1]]self.true_line.set_data(true_x, true_y)return self.line, self.true_linedef animate(self) -> None:fig, ax = plt.subplots()ax.set_xlim(0, 10)ax.set_ylim(-1.5, 1.5)self.line, = ax.plot([], [], 'bo-', label='Kalman Filter')self.true_line, = ax.plot([], [], 'ro--', label='True Path')ani = FuncAnimation(fig, self.update, frames=len(self.tracker.history),init_func=self.init, blit=True, repeat=True)ani.save('kalman_filter_curve.gif', writer='imagemagick')plt.legend()plt.show()# 初始化卡尔曼滤波器
initial_measurement = np.array([0, 0, 1, 1])
tracker = KalmanFilterTracker(initial_measurement)# 生成测量值,形成曲线轨迹(正弦波)
measurements = []
for t in np.linspace(0, 10, 100):x = ty = np.sin(t)measurements.append(np.array([x, y, 1, 1]))# 更新卡尔曼滤波器
for measurement in measurements:tracker.predict_and_update(measurement)# 创建动画并生成GIF
animation = KalmanFilterAnimation(tracker, measurements)
animation.animate()

请添加图片描述
请添加图片描述

如果要分析滤波器性能、调试滤波器以及可视化滤波器是非常有用的,那么可以这样做

class KalmanFilterTracker:def __init__(self, initial_measurement: np.ndarray) -> None:self.kf = KalmanFilter()self.mean, self.covariance = self.kf.initiate(initial_measurement)self.history = [initial_measurement[:2]]  # 只记录位置 (x, y)self.states = [self.mean]  # 存储历史状态均值self.covariances = [self.covariance]  # 存储历史协方差矩阵def predict_and_update(self, measurement: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:self.mean, self.covariance = self.kf.predict(self.mean, self.covariance)self.mean, self.covariance = self.kf.update(self.mean, self.covariance, measurement)self.history.append(self.mean[:2])  # 只记录位置 (x, y)self.states.append(self.mean)  # 存储历史状态均值self.covariances.append(self.covariance)  # 存储历史协方差矩阵return self.mean, self.covariance

记录历史值可以分析滤波器的性能,查找和修正可能的问题。对于可视化和演示目的,存储历史值可以让绘制出估计轨迹和实际轨迹,以便直观地比较和展示滤波效果。

如果只是单纯的用,在递归估计中,只需保持前一时刻的状态即可

class KalmanFilterTracker:def __init__(self, initial_measurement: np.ndarray) -> None:self.kf = KalmanFilter()self.mean, self.covariance = self.kf.initiate(initial_measurement)def predict_and_update(self, measurement: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:self.mean, self.covariance = self.kf.predict(self.mean, self.covariance)self.mean, self.covariance = self.kf.update(self.mean, self.covariance, measurement)return self.mean, self.covariance

这篇关于卡尔曼滤波源码注释和调用示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066949

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏