数据赋能(120)——体系:数据清洗——影响因素、直接作用、主要特征

2024-06-16 08:12

本文主要是介绍数据赋能(120)——体系:数据清洗——影响因素、直接作用、主要特征,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

影响因素

数据清洗主要影响因素如下:

  1. 数据源质量:
    1. 数据清洗的第一步是处理原始数据,而原始数据的质量直接决定了清洗的难度和效果。
    2. 如果数据源本身就存在大量错误、不一致、重复或缺失的数据,那么清洗过程将变得更为复杂,且难以保证最终数据的准确性。
  2. 数据格式与结构:
    1. 数据的格式和结构多样性也是影响清洗效果的重要因素。
    2. 不同的数据源可能采用不同的格式和结构,如文本、表格、图像等,这增加了数据清洗的难度。
    3. 字段名、数据类型和编码方式的不一致也可能导致清洗过程中的错误和混淆。
  3. 业务逻辑与规则:
    1. 数据清洗需要根据业务逻辑和规则进行,例如,某些字段可能具有特定的取值范围或格式要求。
    2. 如果清洗过程中没有充分考虑这些业务规则,可能会导致数据失真或丢失重要信息。
  4. 数据量与复杂性:
    1. 处理大量数据时,数据清洗的难度和所需时间都会增加。
    2. 数据的复杂性,如包含多种数据类型、多个维度或涉及多个数据源,也会使清洗过程变得更加复杂。
  5. 技术与工具:
    1. 选择合适的数据清洗技术和工具对于提高清洗效率和准确性至关重要。
    2. 不同的技术和工具有不同的适用场景和优缺点,需要根据实际情况进行选择。
  6. 人员技能与经验:
    1. 数据清洗需要具备一定的数据分析和处理能力,以及对业务需求的深入理解。
    2. 人员的技能水平和经验对数据清洗的质量和效率具有重要影响。
直接作用

数据清洗的直接作用体现在以下几个方面:

  1. 提高数据质量:
    1. 数据清洗能够识别和纠正数据集中的错误、异常值和不一致的数据,从而提高数据的准确性和可靠性。
    2. 清洗过程可以去除重复数据、填充缺失值、修正拼写错误等,确保数据集的完整性和一致性。
  2. 增强数据可用性:
    1. 经过清洗的数据更加整洁、有序,便于后续的数据分析和挖掘工作。
    2. 清洗后的数据能够消除噪声和干扰,使得分析结果更加准确和可信。
  3. 提升分析效率:
    1. 数据清洗能够简化数据集,去除无关变量和冗余信息,从而缩小数据处理和分析的范围,提高分析效率。
    2. 有助于分析人员更快地获取有价值的信息和洞见。
主要特征

数据清洗的主要特征体现在以下几个方面:

  1. 完整性:
    1. 确保数据集中的所有记录都有完整的字段,没有缺失值。
    2. 对于缺失值,可以采取填充(如使用均值、中位数、众数等)、删除或插值等方法进行处理。
  2. 准确性:
    1. 识别和纠正数据中的错误和异常值。
    2. 通过数据验证、域完整性检查(例如,年龄不能是负数)和异常值检测(如使用IQR方法)来确保数据的准确性。
  3. 一致性:
    1. 确保数据集中的数据格式、单位、编码等保持一致。
    2. 对于不一致的数据,需要进行转换、标准化或重新编码。
  4. 唯一性:
    1. 在处理数据时,重复的记录或数据项可能会导致分析结果的偏差。
    2. 数据清洗的一个重要任务就是识别和删除重复的数据,确保数据的唯一性。
  5. 有效性:
    1. 确保数据符合预期的格式、范围和业务规则。
    2. 使用数据验证和范围检查来确保数据的有效性。
  6. 效率性:
    1. 数据清洗通常需要处理大量的数据。
    2. 清理过程需要高效且快速,以便在合理的时间内完成任务。

这篇关于数据赋能(120)——体系:数据清洗——影响因素、直接作用、主要特征的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065911

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

SpringBoot 中 CommandLineRunner的作用示例详解

《SpringBoot中CommandLineRunner的作用示例详解》SpringBoot提供的一种简单的实现方案就是添加一个model并实现CommandLineRunner接口,实现功能的... 目录1、CommandLineRunnerSpringBoot中CommandLineRunner的作用

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock