Python烟雾液体弹性力微分模拟 | 出租车往返速度微分计算

本文主要是介绍Python烟雾液体弹性力微分模拟 | 出租车往返速度微分计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯弹性连续力学 | 🎯弱可压缩液体 | 🎯不可压缩流体(烟雾)| 🎯高度场浅水波动 | 🎯质量弹簧系统地面碰撞 | 🎯前向欧拉方法台球刚体运动,动量和动能守恒 | 🎯高度场重建水面模型实现图像渲染器 | 🎯图像体积渲染器 | 🎯磁场模拟

🎯算法微分:Python | C++漂移扩散方程和无风险套利公式算法微分

🍇Python微分计算出租车往返速度模型

微分计算的总体目标是计算:
d p rogram  d p arams  \frac{d p_{\text {rogram }}}{d p_{\text {arams }}} dparams dprogram 

即量化程序及其输出对其某些参数的敏感性。

首先,使用传统的、数据独立的代码编写一个程序来估计出租车乘坐的持续时间:

import numpy as npdef linear_predictions(weights, inputs):return np.dot(inputs, weights) * 60.0 v_avg = 30 
startup_time = 2 /60.0 inputs = np.array([[1.0, 6.0],[1.0, 4.0 ]])weights = np.array([startup_time, 1.0 / v_avg]) print("Predictions:", linear_predictions(weights, inputs))

在此代码中,我们使用某市预先计算的平均速度来计算出租车行程持续时间:大约 30 公里/小时。这是制作程序的传统方法,即数据不影响其参数。我们使用预定义的参数,这里是预先估计的平均速度,将该速度的倒数乘以行程距离,我们就得到了预期的行程持续时间。无论我们运行多少次,它都永远不会改善。它永远不会从错误中吸取教训。

微分计算提供的功能恰恰相反:每次运行都可用于微调应用程序参数。让我们看看这是如何实现的。对于计算机和人类来说都适用的一件事是,为了改进,你需要反馈。理想情况下,您需要一种方法来量化您的错误。

在计算机世界中,这可以通过在我们的初始代码中引入一个新函数来轻松完成,该函数计算相对常见的误差测量:平方误差。

import numpy as npdef linear_predictions(weights, inputs):return np.dot(inputs, weights) * 60.0def squared_loss(weights, inputs, targets):preds = linear_predictions(weights, inputs)err = (preds - targets)**2return np.sum(err)v_avg = 30 
startup_time = 2 /60.0 inputs = np.array([[1.0, 6.0],[1.0, 4.0 ]])
targets = np.array([13, 10.5])weights = np.array([startup_time, 1.0 / v_avg])
print("Trained loss:", squared_loss(weights, inputs, targets))

了解错误后,您需要一种方法来了解需要朝哪个方向修改参数以减少错误。让我们分析一个具体的例子。假设一次旅行的持续时间为 12 分钟,距离为 6 公里。要用我们的模型精确预测这个值,模型的正确参数应该是 30 公里。

让我们看一下平方误差相对于我们的参数(平均速度)的图,以获得一些见解。整个代码很简单:

import matplotlib.pyplot as plt
import numpy as nptrip_distance = 6.0 
trip_duration = 12.0 
trip_avg_speed = 30.0 def duration(distance, speed):return distance * 1/speed * 60.0real_duration = duration(trip_distance, trip_avg_speed)speeds = np.linspace(5, 50)
duration = np.vectorize(lambda speed: duration(trip_distance, speed))(speeds)
error = 12 - durationfig, ax = plt.subplots()
ax.grid(True, which='both')ax.plot(speeds, duration, label='Trip duration wrt speed')
ax.plot(speeds, error, label='Error wrt to speed param')
ax.scatter([trip_avg_speed], [0], label='Error for real average speed')plt.xlabel('average speed')
plt.legend()
plt.show()

蓝色曲线显示了行程持续时间相对于速度的演变。更快的行程显然会导致更短的行程持续时间。橙色曲线将误差显示为实际持续时间(此处为 12 分钟)与给定所选速度的行程持续时间之间的简单差异。对于实际平均速度:30km/h,该误差为零。绿色曲线是平方误差。与误差类似,平均速度为 30 km/h 时达到零。

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python烟雾液体弹性力微分模拟 | 出租车往返速度微分计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065873

相关文章

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre