大数据工程师如何做到数据可视化?

2024-06-16 05:28

本文主要是介绍大数据工程师如何做到数据可视化?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

好的数据可视化作品都是通过不断的数据对比分析实战出来的。

今天给大家带来一篇大数据工程师干货,从多角度解析做数据可视化的重要性,并解读一些适用的应用场景。大数据工程师们刷到这篇文章时一定要进来看看,满满的干货。

目录

    • 1. 什么是数据可视化
    • 2. 数据可视化的重要性
      • 2.1 提高理解效率
      • 2.2 支持决策
      • 2.3 发现潜在模式和趋势
      • 2.4 增强数据的说服力
    • 3. 数据可视化的应用场景
      • 3.1 市场分析
      • 3.2 产品设计
      • 3.3 运营管理
      • 3.4 科学研究
    • 4. 如何做好数据可视化
      • 4.1 选择合适的图表类型
      • 4.2 保持简洁明了
      • 4.3 注重色彩搭配
      • 4.4 提供交互功能
    • 5. 数据可视化工具推荐
      • 5.1 Tableau
      • 5.2 Power BI
      • 5.3 D3.js
      • 5.4 ECharts
      • 5.5 Plotly
    • 6. 结论
      • 小结

大数据工程师在工作中经常会遇到下面这种情况:自己辛辛苦苦、加班加点、没日没夜做出来的数据分析报告交到 boss 们手上,结果却看不懂,全程黑人问号脸。原因就在于,自己埋头苦干做出来的数据分析结果,没有用能够让别人一目了然、清晰明了的呈现方式展示出来,努力全白费。

为了让大家对数据可视化不再束手无措,希望通过这篇文章和大家一起交流学习,解决一些我们共同的问题。

1. 什么是数据可视化

数据科学的大力发展,让信息科学领域面临一个巨大挑战:数据爆炸。然而,人类分析数据的能力已经远远落后于获取数据的能力。

数据量越来越大、越多元化,数据内容的噪声让人们在庞杂的数据世界中倍感枯燥繁琐,理解成本较高。这个挑战不仅在于如何从海量数据中提取出有用知识,还在于如何将数据转化成使人快速理解的知识。

如何从海量数据中提取知识是数据处理和数据挖掘的范畴,而如何让数据转化成使人快速理解的知识则需要数据可视化。

image.png

相比单纯的数字,图形形式可以让人更容易洞察到数据的分布、趋势、关系以及异常点,从而帮助决策者快速决策。数据可视化就是将数据转换成易读、易懂、易操作的图或表,以一种简洁明了、通俗易懂的方式展现和呈现数据。

2. 数据可视化的重要性

2.1 提高理解效率

图形化的数据展示可以极大地提高信息的传递效率。复杂的数据通过图形、图表等形式展示,可以使非专业人员也能快速理解数据背后的含义。

image.png

2.2 支持决策

在企业管理中,决策层往往需要在短时间内做出重要决策。数据可视化可以帮助决策者快速获取所需信息,支持他们做出准确的判断和决策。
image.png

2.3 发现潜在模式和趋势

通过图形和图表,工程师和分析师可以更容易地发现数据中的潜在模式和趋势,从而挖掘出更多有价值的信息,指导业务发展。

2.4 增强数据的说服力

视觉化的展示方式往往更具说服力。清晰直观的数据展示可以让观众更容易理解和接受数据背后的观点和结论。

3. 数据可视化的应用场景

3.1 市场分析

市场分析需要处理大量的销售数据、市场趋势和消费者行为数据。通过数据可视化,可以更清晰地展示市场变化趋势,帮助企业制定更精准的市场策略。

3.2 产品设计

在产品设计过程中,工程师需要分析用户反馈、使用数据等。通过数据可视化,可以更好地理解用户需求,优化产品设计,提高用户满意度。

3.3 运营管理

企业运营管理涉及各个方面的数据,如生产数据、物流数据、财务数据等。通过数据可视化,可以全面监控运营状况,提高管理效率。

3.4 科学研究

科学研究中,数据分析是必不可少的一环。通过数据可视化,研究人员可以更直观地展示实验结果、数据趋势,从而更有效地进行学术交流和成果展示。

4. 如何做好数据可视化

4.1 选择合适的图表类型

根据数据的特点和展示需求,选择合适的图表类型,如柱状图、折线图、饼图等。不同的图表类型适用于不同的数据展示场景。

4.2 保持简洁明了

数据可视化的目的是让观众快速理解数据背后的信息,因此在设计图表时要保持简洁明了,避免过多的装饰和复杂的设计。

4.3 注重色彩搭配

合理的色彩搭配可以增强图表的可读性和美观度。在选择颜色时,要考虑色彩的对比度和统一性,使图表更加易读。

4.4 提供交互功能

交互式的图表可以提高用户的参与感和理解深度。通过添加筛选、缩放、点击等交互功能,使用户可以更深入地探索数据。

5. 数据可视化工具推荐

为了帮助大数据工程师更好地进行数据可视化,以下是一些常用的数据可视化工具推荐:

5.1 Tableau

Tableau 是一种强大的数据可视化工具,适用于各种规模的企业。它支持多种数据源,并提供丰富的图表类型和交互功能,用户可以通过简单的拖拽操作创建复杂的可视化图表。

5.2 Power BI

Power BI 是微软推出的数据分析和可视化工具,特别适合与 Office 365 和 Azure 环境集成。它提供了强大的数据处理和分析功能,以及丰富的可视化选项,适用于从小型企业到大型企业的各种需求。

5.3 D3.js

D3.js 是一个基于 JavaScript 的数据可视化库,适用于前端开发者。它允许开发者通过代码自定义和创建复杂的可视化图表,并与网页内容无缝集成。

5.4 ECharts

ECharts 是由百度开源的一个可视化库,适用于前端开发者。它提供了丰富的图表类型和灵活的定制能力,适合需要高性能和高交互性的可视化项目。

ECharts

5.5 Plotly

Plotly 是一个支持多种编程语言(如 Python、R 和 JavaScript)的数据可视化工具,适用于科学计算和数据分析领域。它提供了丰富的图表类型和交互功能,并支持在线分享和协作。
newplot.png

import plotly.express as px  
import pandas as pd  # 创建一个虚拟数据集  
df = pd.DataFrame({  'Category': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'],  'Value1': [10, 15, 13, 17, 19, 12, 11, 18, 20, 14],  'Value2': [16, 5, 11, 9, 13, 10, 7, 6, 15, 12],  'Size': [40, 60, 80, 60, 50, 70, 90, 100, 60, 50]  
})  fig = px.scatter(df, x='Value1', y='Value2', size='Size', color='Category',  title='漂亮的气泡图示例',  labels={'Value1': 'X 轴值', 'Value2': 'Y 轴值'},  size_max=100, template='plotly_dark')  fig.update_layout(title_font_size=24, title_x=0.5,  xaxis=dict(title_font_size=18),  yaxis=dict(title_font_size=18))  fig.show()

工具太多了,在工具中常用的可能就是BI工具,比如帆软的,要是自己可以用代码绘图,那当然更好

6. 结论

数据可视化不仅仅是一个展示数据的工具,更是一个理解数据、挖掘数据背后价值的重要手段。对于大数据工程师来说,掌握数据可视化技能,选择合适的工具和方法,不仅能提升工作效率,更能提高数据分析的准确性和决策的科学性。希望通过这篇文章,能够帮助大家更好地理解和应用数据可视化,让数据真正服务于业务和决策。

小结

数据可视化是大数据工程师必备的一项技能,它不仅能够提升数据分析的效率和准确性,还能够帮助团队和决策者更好地理解数据,做出更科学的决策。通过选择合适的工具和方法,掌握数据可视化技能,大数据工程师们将能够在数据分析的道路上走得更远。

希望这篇文章能够帮助大家更好地理解和应用数据可视化。如果你有任何问题或建议,欢迎在评论区留言,与我们一起交流学习。

这篇关于大数据工程师如何做到数据可视化?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065562

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名