39python数据分析numpy基础之h5py读写数组数据到h5文件

2024-06-15 22:44

本文主要是介绍39python数据分析numpy基础之h5py读写数组数据到h5文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 python数据分析numpy基础之h5py读写数组数据到h5文件

HDF5(分层数据格式文件)是Hierarchical Data Format Version 5的缩写,是一种用于存储和管理大数据的文件格式。经历了20多年的发展,HDF格式的最新版本是HDF5,它包含了数据模型,库,和文件格式标准。

一个hdf5文件包括“dataset”和“group”。

HDF5 文件一般以 .h5 或者 .hdf5 作为后缀名,HDF5 文件结构中有 2 primary objects: Groups 和 Datasets。

Groups 就类似于文件夹,每个 HDF5 文件其实就是根目录 (root) group’/',可以看成目录的容器,其中可以包含一个或多个 dataset 及其它的 group。

Datasets 类似于 NumPy 中的数组 array,可以当作数组的数据集合 。

每个 dataset 可以分成两部分: 原始数据 (raw) data values 和 元数据 metadata。

1.1 安装h5py

通过pip install h5py安装h5py库。

D:\python39>pip3 install h5py
Collecting h5pyDownloading h5py-3.10.0-cp39-cp39-win_amd64.whl (2.7 MB)|████████████████████████████████| 2.7 MB 79 kB/s
Requirement already satisfied: numpy>=1.17.3 in d:\python39\lib\site-packages (from h5py) (1.26.1)
Installing collected packages: h5py
Successfully installed h5py-3.10.0
WARNING: You are using pip version 20.2.3; however, version 24.0 is available.
You should consider upgrading via the 'd:\python39\python.exe -m pip install --upgrade pip' command.

1.2 读写hdf5文件

通过h5py.File(file,mode)创建一个h5文件。通过create_dataset()将数组写到hdf5文件。

用法

h5py.File(name, mode='r')

描述

python的h5py库的File()函数创建一个h5文件。

NOmode描述1
1r默认值r,为只读,文件必须存在
2r+读写,文件必须存在
3w创建文件,如果存在则截断
4w-或x创建文件,如果存在则失败
5a读和写,如果不存在则创建

用法

create_dataset(name, shape=None, dtype=None, data=None, **kwds)

描述

python的通过h5py.File.create_dataset()向h5文件写内容。

name:数据集名称,通过此名称进行存取数组。

data:要写到h5文件的数组数据。

模式为w时,每次调用create_dataset()会截断文件,覆盖h5文件原有的内容。

模式为a时,每次调用create_dataset()不会覆盖h5文件原有内容,通过切片修改达到修改文件的效果。

示例

>>> import numpy as np
>>> import h5py
>>> ar1=np.arange(24).reshape(2,3,4)
>>> ar2=np.arange(24).reshape(1,3,8)
>>> fname1=r'E:\ls\h5f1.h5'
# h5py.File()写模式创建一个h5文件
>>> h5f1=h5py.File(fname1,mode='w')
# 将数组写到h5文件
>>> h5f1.create_dataset('ar1',data=ar1)
<HDF5 dataset "ar1": shape (2, 3, 4), type "<i4">
>>> h5f1.create_dataset('ar2',data=ar2)
<HDF5 dataset "ar2": shape (1, 3, 8), type "<i4">
# 读模式打开一个h5文件
>>> h5f1=h5py.File(fname1,mode='r')
# 通过切片获取数组
>>> h5f1['ar1'][:]
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
>>> h5f1['ar2'][:]
array([[[ 0,  1,  2,  3,  4,  5,  6,  7],[ 8,  9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23]]])
>>> h5f1.close()
# 切换a模式,添加数组到dataset,达到向文件添加内容的效果
>>> h5f1=h5py.File(fname1,mode='a')
# 已经存在的dataset不可再次create添加
>>> h5f1.create_dataset('ar2',data=[1,2])
Traceback (most recent call last):File "<pyshell#64>", line 1, in <module>h5f1.create_dataset('ar2',data=[1,2])File "D:\python39\lib\site-packages\h5py\_hl\group.py", line 183, in create_datasetdsid = dataset.make_new_dset(group, shape, dtype, data, name, **kwds)File "D:\python39\lib\site-packages\h5py\_hl\dataset.py", line 163, in make_new_dsetdset_id = h5d.create(parent.id, name, tid, sid, dcpl=dcpl, dapl=dapl)File "h5py\_objects.pyx", line 54, in h5py._objects.with_phil.wrapperFile "h5py\_objects.pyx", line 55, in h5py._objects.with_phil.wrapperFile "h5py\h5d.pyx", line 137, in h5py.h5d.create
ValueError: Unable to synchronously create dataset (name already exists)
# 通过切片方式进行修改
>>> h5f1['ar2'][0,0]=[20,21,22,23,25,26,27,28]
>>> h5f1['ar2'][:]
array([[[20, 21, 22, 23, 25, 26, 27, 28],[ 8,  9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23]]])
>>> h5f1['ar1'][:]
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
# 添加dataset到h5文件,不会截断之前的文件内容
>>> h5f1.create_dataset('ar3',data=[1,2])
<HDF5 dataset "ar3": shape (2,), type "<i4">
>>> h5f1['ar3'][:]
array([1, 2])
>>> h5f1['ar2'][:]
array([[[20, 21, 22, 23, 25, 26, 27, 28],[ 8,  9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23]]])

这篇关于39python数据分析numpy基础之h5py读写数组数据到h5文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064793

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We