39python数据分析numpy基础之h5py读写数组数据到h5文件

2024-06-15 22:44

本文主要是介绍39python数据分析numpy基础之h5py读写数组数据到h5文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 python数据分析numpy基础之h5py读写数组数据到h5文件

HDF5(分层数据格式文件)是Hierarchical Data Format Version 5的缩写,是一种用于存储和管理大数据的文件格式。经历了20多年的发展,HDF格式的最新版本是HDF5,它包含了数据模型,库,和文件格式标准。

一个hdf5文件包括“dataset”和“group”。

HDF5 文件一般以 .h5 或者 .hdf5 作为后缀名,HDF5 文件结构中有 2 primary objects: Groups 和 Datasets。

Groups 就类似于文件夹,每个 HDF5 文件其实就是根目录 (root) group’/',可以看成目录的容器,其中可以包含一个或多个 dataset 及其它的 group。

Datasets 类似于 NumPy 中的数组 array,可以当作数组的数据集合 。

每个 dataset 可以分成两部分: 原始数据 (raw) data values 和 元数据 metadata。

1.1 安装h5py

通过pip install h5py安装h5py库。

D:\python39>pip3 install h5py
Collecting h5pyDownloading h5py-3.10.0-cp39-cp39-win_amd64.whl (2.7 MB)|████████████████████████████████| 2.7 MB 79 kB/s
Requirement already satisfied: numpy>=1.17.3 in d:\python39\lib\site-packages (from h5py) (1.26.1)
Installing collected packages: h5py
Successfully installed h5py-3.10.0
WARNING: You are using pip version 20.2.3; however, version 24.0 is available.
You should consider upgrading via the 'd:\python39\python.exe -m pip install --upgrade pip' command.

1.2 读写hdf5文件

通过h5py.File(file,mode)创建一个h5文件。通过create_dataset()将数组写到hdf5文件。

用法

h5py.File(name, mode='r')

描述

python的h5py库的File()函数创建一个h5文件。

NOmode描述1
1r默认值r,为只读,文件必须存在
2r+读写,文件必须存在
3w创建文件,如果存在则截断
4w-或x创建文件,如果存在则失败
5a读和写,如果不存在则创建

用法

create_dataset(name, shape=None, dtype=None, data=None, **kwds)

描述

python的通过h5py.File.create_dataset()向h5文件写内容。

name:数据集名称,通过此名称进行存取数组。

data:要写到h5文件的数组数据。

模式为w时,每次调用create_dataset()会截断文件,覆盖h5文件原有的内容。

模式为a时,每次调用create_dataset()不会覆盖h5文件原有内容,通过切片修改达到修改文件的效果。

示例

>>> import numpy as np
>>> import h5py
>>> ar1=np.arange(24).reshape(2,3,4)
>>> ar2=np.arange(24).reshape(1,3,8)
>>> fname1=r'E:\ls\h5f1.h5'
# h5py.File()写模式创建一个h5文件
>>> h5f1=h5py.File(fname1,mode='w')
# 将数组写到h5文件
>>> h5f1.create_dataset('ar1',data=ar1)
<HDF5 dataset "ar1": shape (2, 3, 4), type "<i4">
>>> h5f1.create_dataset('ar2',data=ar2)
<HDF5 dataset "ar2": shape (1, 3, 8), type "<i4">
# 读模式打开一个h5文件
>>> h5f1=h5py.File(fname1,mode='r')
# 通过切片获取数组
>>> h5f1['ar1'][:]
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
>>> h5f1['ar2'][:]
array([[[ 0,  1,  2,  3,  4,  5,  6,  7],[ 8,  9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23]]])
>>> h5f1.close()
# 切换a模式,添加数组到dataset,达到向文件添加内容的效果
>>> h5f1=h5py.File(fname1,mode='a')
# 已经存在的dataset不可再次create添加
>>> h5f1.create_dataset('ar2',data=[1,2])
Traceback (most recent call last):File "<pyshell#64>", line 1, in <module>h5f1.create_dataset('ar2',data=[1,2])File "D:\python39\lib\site-packages\h5py\_hl\group.py", line 183, in create_datasetdsid = dataset.make_new_dset(group, shape, dtype, data, name, **kwds)File "D:\python39\lib\site-packages\h5py\_hl\dataset.py", line 163, in make_new_dsetdset_id = h5d.create(parent.id, name, tid, sid, dcpl=dcpl, dapl=dapl)File "h5py\_objects.pyx", line 54, in h5py._objects.with_phil.wrapperFile "h5py\_objects.pyx", line 55, in h5py._objects.with_phil.wrapperFile "h5py\h5d.pyx", line 137, in h5py.h5d.create
ValueError: Unable to synchronously create dataset (name already exists)
# 通过切片方式进行修改
>>> h5f1['ar2'][0,0]=[20,21,22,23,25,26,27,28]
>>> h5f1['ar2'][:]
array([[[20, 21, 22, 23, 25, 26, 27, 28],[ 8,  9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23]]])
>>> h5f1['ar1'][:]
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
# 添加dataset到h5文件,不会截断之前的文件内容
>>> h5f1.create_dataset('ar3',data=[1,2])
<HDF5 dataset "ar3": shape (2,), type "<i4">
>>> h5f1['ar3'][:]
array([1, 2])
>>> h5f1['ar2'][:]
array([[[20, 21, 22, 23, 25, 26, 27, 28],[ 8,  9, 10, 11, 12, 13, 14, 15],[16, 17, 18, 19, 20, 21, 22, 23]]])

这篇关于39python数据分析numpy基础之h5py读写数组数据到h5文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064793

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类