代码随想录算法训练营Day39|62.不同路径、63.不同路径II、343.整数拆分、96.不同的二叉搜索树

本文主要是介绍代码随想录算法训练营Day39|62.不同路径、63.不同路径II、343.整数拆分、96.不同的二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不同路径

62. 不同路径 - 力扣(LeetCode)

机器人位于m*n网格的左上角,机器人每次只能向下或向右移动一步(移动方向只有下和右,固定了不能回返路径)。机器人需要达到网格的右下角,需要得到共有多少条路径。

思路:使用动态规划来解决,这里需要得到动态规划的dp矩阵,以及dp矩阵的推演公式。

这里我们假定dp矩阵为m*n的矩阵,dp[i][j]为能抵达 i -1,j-1的路径总数,这里需要注意的是该矩阵是从0,0开始的,所以最后返回的是dp[m-1][n-1],再次,我们需要考虑dp[i][j]怎么得到,考虑一个最简单的2*2的矩阵,从[0][0]到[0][1]有一条路线,从[0][0]到[1][0]同样有一条路线,从[0][0]到[1][1]即有先到[0][1]再到[1][1]和先到[1][0]再到[1][1]两条路线,值正好为两者相加 1 + 1。即我们可以假定dp[i][j] = dp[i-1][j] + dp[i][j-1],和之前的爬楼梯相似,得到了dp数组的推导方式后,我们考虑对初始值进行赋值,考虑到机器人每次只能向下或向右移动,所以dp[i][0]和dp[0][j]的值应该都为1.

在确定了dp数组以及下标的含义和确定了推导公式以及dp数组的初始化问题后,我们的遍历顺序即从左上逐行或者逐列遍历到最后一个元素。最后返回dp[m-1][n-1]。代码如下。

class Solution {
public:int uniquePaths(int m, int n) {// 创建一个二维向量dp来存储到达每个位置的不同路径数量vector<vector<int>> dp(m, vector<int>(n));// 将第一行设置为1,因为从起点到第一行的任何位置都只有一种路径for (int j = 0; j < n; ++j) {dp[0][j] = 1;}// 将第一列设置为1,因为从起点到第一列的任何位置也都只有一种路径for (int i = 0; i < m; ++i) {dp[i][0] = 1;}// 遍历网格的其余部分,计算到达每个位置的不同路径数量for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {// 每个位置的不同路径数量等于它上方和左方位置路径数量之和dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}// 返回到达网格右下角的不同路径数量return dp[m - 1][n - 1];}
};

算法的时间复杂度为O(m*n),空间复杂度为O(m*n),m行n列的矩阵需要遍历。

不同路径II

        大致思路同上,但是需要注意的是,如果第一行和第一列碰到有障碍,其之后的值就不需要赋1了。

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int rows = obstacleGrid.size();int cols = obstacleGrid[0].size();// 创建一个二维向量dp来存储到达每个位置的不同路径数量vector<vector<int>> dp(rows, vector<int>(cols));// 将第一行设置为1,因为从起点到第一行的任何位置都只有一种路径for (int i = 0; i < rows; ++i) {if(obstacleGrid[i][0] == 0)dp[i][0] = 1;elsebreak;}// 将第一列设置为1,因为从起点到第一列的任何位置也都只有一种路径for (int j = 0; j < cols; ++j) {if(obstacleGrid[0][j] == 0)dp[0][j] = 1;elsebreak;}// 遍历网格的其余部分,计算到达每个位置的不同路径数量for (int i = 1; i < rows; ++i) {for (int j = 1; j < cols; ++j) {if(obstacleGrid[i][j] == 1)dp[i][j] = 0;elsedp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}// 返回到达网格右下角的不同路径数量return dp[rows - 1][cols - 1];}
};

算法的时间复杂度和空间复杂度同上。

剩下两题周末补。

这篇关于代码随想录算法训练营Day39|62.不同路径、63.不同路径II、343.整数拆分、96.不同的二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064702

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill