【Unity学习笔记】第十八 基于物理引擎的日月地系统简单实现

本文主要是介绍【Unity学习笔记】第十八 基于物理引擎的日月地系统简单实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载请注明出处: https://blog.csdn.net/weixin_44013533/article/details/139701843

作者:CSDN@|Ringleader|

目录

    • 目标
    • 数学理论
    • 资源准备
    • 数据准备
    • 代码实现
    • Unity准备
    • 效果展示
    • 注意事项
    • 后记

目标

目标:利用Unity的物理引擎实现 “日地月三体系统” 。
效果类似下面的示意图:
在这里插入图片描述

数学理论

  1. 万有引力公式
  2. 向心力公式
  3. 天体圆周运动轨道速度公式
    在这里插入图片描述

资源准备

日月地模型及贴图:
https://assetstore.unity.com/packages/3d/environments/planets-of-the-solar-system-3d-90219
在这里插入图片描述

数据准备

名称数值
引力常数 ( G ) G = 6.67430 × 1 0 − 11 m 3 kg − 1 s − 2 G = 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} G=6.67430×1011m3kg1s2
太阳半径 R Sun R_{\text{Sun}} RSun R Sun = 6.96 × 1 0 8 m R_{\text{Sun}} = 6.96 \times 10^8 \, \text{m} RSun=6.96×108m
太阳质量 M Sun M_{\text{Sun}} MSun M Sun = 1.989 × 1 0 30 kg M_{\text{Sun}} = 1.989 \times 10^{30} \, \text{kg} MSun=1.989×1030kg
日地距离 r Sun-Earth r_{\text{Sun-Earth}} rSun-Earth r Sun-Earth = 1.496 × 1 0 11 m r_{\text{Sun-Earth}} = 1.496 \times 10^{11} \, \text{m} rSun-Earth=1.496×1011m
地球半径 R Earth R_{\text{Earth}} REarth R Earth = 6.371 × 1 0 6 m R_{\text{Earth}} = 6.371 \times 10^6 \, \text{m} REarth=6.371×106m
地球质量 M Earth M_{\text{Earth}} MEarth M Earth = 5.972 × 1 0 24 kg M_{\text{Earth}} = 5.972 \times 10^{24} \, \text{kg} MEarth=5.972×1024kg
地月距离 r Earth-Moon r_{\text{Earth-Moon}} rEarth-Moon r Earth-Moon = 3.844 × 1 0 8 m r_{\text{Earth-Moon}} = 3.844 \times 10^8 \, \text{m} rEarth-Moon=3.844×108m
月球半径 R Moon R_{\text{Moon}} RMoon R Moon = 1.7371 × 1 0 6 m R_{\text{Moon}} = 1.7371 \times 10^6 \, \text{m} RMoon=1.7371×106m
月球质量 M Moon M_{\text{Moon}} MMoon M Moon = 7.348 × 1 0 22 kg M_{\text{Moon}} = 7.348 \times 10^{22} \, \text{kg} MMoon=7.348×1022kg

当然不能取这么大,缩放下比例尺后的数据如下,同时用这些数据初始化系统。

public class ConstantParamter : MonoBehaviour{public static float gravitationalConstant = 0.6674f; // 原6.674e-11public static float sunMass = 1.989e6f; //缩小10^24倍,原1.989e30public static float earthMass = 5.972f; //原5.972e24public static float moonMass = 0.07348f; //原7.348e22public static float distanceOfSunAndEarth = 1496f; //缩小10^8倍,原1.496e11public static float distanceOfEarthAndMoon = 3.844f; //原3.844e8public static float sunScale = 6.96f;public static float earthScale = 0.06371f;public static float moonScale = 0.017371f;public static float earthTangentialVelocityScale = 1.4f; //1.45是近似标准圆public static float moonTangentialVelocityScale = 1f; //1.45是近似标准圆public Rigidbody sun;public Rigidbody earth;public Rigidbody moon;private void Start(){// 初始化太阳sun.mass = sunMass;sun.position = Vector3.zero;// 初始化地球earth.mass = earthMass;earth.position = new Vector3(distanceOfSunAndEarth, 0, 0);// var earthScale = ConstantParamter.earthScale;// earth.transform.localScale = new Vector3(earthScale, earthScale, earthScale);//初始化月球 (月球位置在日地之间还是外面不影响)moon.mass = moonMass;moon.position = new Vector3(distanceOfSunAndEarth - distanceOfEarthAndMoon, 0, 0);// var moonScale = ConstantParamter.moonScale;// moon.transform.localScale = new Vector3(moonScale, moonScale, moonScale);}}

scale 和初始位置最好能自己调整,方便后面的collider范围确定。

代码实现

  1. UniversalGravity 万有引力脚本,对进入trigger的物体施加指向自己的万有引力

    public class UniversalGravity : MonoBehaviour{private float gravitationalConstant = ConstantParamter.gravitationalConstant;public Rigidbody center;private int moonLayer;private int earthLayer;private int sunLayer;public bool printMsg = false;private void Start(){moonLayer = LayerMask.NameToLayer("moon");earthLayer = LayerMask.NameToLayer("earth");sunLayer = LayerMask.NameToLayer("sun");}private void OnTriggerStay(Collider other){try{Print(other.name+"进入"+this.name+"引力场触发器");var layer = other.gameObject.layer;if (layer.Equals(moonLayer) || layer.Equals(earthLayer)){var otherAttachedRigidbody = other.attachedRigidbody;var gravityDirection = center.transform.position - other.transform.position ;var gravityForce = gravitationalConstant * center.mass * otherAttachedRigidbody.mass /Mathf.Pow(gravityDirection.magnitude, 2);otherAttachedRigidbody.AddForce(gravityDirection.normalized * gravityForce);var msg = $"{other.name}被{center.name}施以{gravityDirection.normalized * gravityForce}的引力。";Print(msg);}}catch (Exception e){Print(other.name+"异常:"+e);throw;}}void Print(string msg){if (printMsg){Debug.Log(msg);} }}
    
  2. EarthTangentialVelocity :计算地球绕日运动的初速度,因为轨道可能是椭圆,所以在标准圆轨道速度基础上乘以个缩放值

    // 计算地球绕日运动的初速度,因为轨道可能是椭圆,所以在标准圆轨道速度基础上乘以个缩放值
    public class EarthTangentialVelocity : MonoBehaviour
    {private float gravitationalConstant = ConstantParamter.gravitationalConstant;private float earthTangentialVelocityScale = ConstantParamter.earthTangentialVelocityScale; public Rigidbody sun;Rigidbody rig;private void Start(){rig = GetComponent<Rigidbody>();rig.velocity = CalculateVelocity(rig, sun, earthTangentialVelocityScale);print(name + "的初始速度为:" + rig.velocity);}private Vector3 CalculateVelocity(Rigidbody rigid, Rigidbody center, float tangentialVelocityScale){Vector3 startPosition = rigid.position;var distance = startPosition - center.position;var tangentialDirection = Vector3.Cross(distance, Vector3.up).normalized;Vector3 tangentialVelocity = tangentialDirection *Mathf.Sqrt(gravitationalConstant * center.mass / distance.magnitude) *tangentialVelocityScale;return tangentialVelocity;}
    }
    
  3. MoonTangentialVelocity :计算月球初始切向速度。

    // 计算月球初始切向速度。
    // 把月亮起源当作地球抛落物,所以月球初始速度=地球绕日标准圆速度+月球绕地标准圆速度
    // 当然由于轨道不一定是标准圆,所以会加一个缩放值
    public class MoonTangentialVelocity : MonoBehaviour
    {private float gravitationalConstant = ConstantParamter.gravitationalConstant;private float earthTangentialVelocityScale = ConstantParamter.earthTangentialVelocityScale; private float moonTangentialVelocityScale = ConstantParamter.moonTangentialVelocityScale;public Rigidbody sun;public Rigidbody earth;Rigidbody rig;private void Start(){rig = GetComponent<Rigidbody>();var tangentialVelocity1 = CalculateVelocity(rig, earth, moonTangentialVelocityScale);var tangentialVelocity2 = CalculateVelocity(earth, sun, earthTangentialVelocityScale);rig.velocity = tangentialVelocity1 + tangentialVelocity2;print(name + "的初始速度为:" + rig.velocity);}private Vector3 CalculateVelocity(Rigidbody rigid, Rigidbody center, float tangentialVelocityScale){Vector3 startPosition = rigid.position;var distance = startPosition - center.position;var tangentialDirection = Vector3.Cross(distance, Vector3.up).normalized;Vector3 tangentialVelocity = tangentialDirection *Mathf.Sqrt(gravitationalConstant * center.mass / distance.magnitude) *tangentialVelocityScale;return tangentialVelocity;}
    }
    

Unity准备

  1. 本系统使用Unity的built-in physics,将上面store下载的日月地三体模型prefab拖入场景中,各自新增三个万有引力碰撞体,设为isTrigger并调整大小,分别拖入UniversalGravity脚本并添加引力中心。
    在这里插入图片描述 在这里插入图片描述
  2. 为earth和moon分别添加EarthTangentialVelocityMoonTangentialVelocity脚本,这两个脚本是为地球和月球提供初始切向速度, 以保证它们能绕太阳做圆周运动。
  3. 使用trail组件即可展示地月运行轨迹
  4. moon和earth添加对应的layer,注意对应的trigger也要添加layer,过滤不需要施加力的对象。

效果展示

(紫色为月球轨迹,绿色为地球轨迹)

unity物理引擎实现简单日地月三体系统

在这里插入图片描述
地月交会瞬间  

在这里插入图片描述
完整地月绕日轨道  

注意事项

  1. 一定要考虑月球对地球的引力,这是月球不会脱离地球的主要原因
    如果不考虑月球对地球的引力,那么在离心力的作用下月球将会逐渐远离太阳,当然也可能像彗星一样绕超长轨道绕日运动。(就像旋转的雨伞,水滴脱离伞面后将会远远地抛离)

    实验效果:请添加图片描述
    当没有月球对地球引力作用时,月球绕日轨道(类似彗星轨道)  

    我一开始就是因为没考虑月球引力作用,总是得不到正确的轨道,还以为是比例尺导致的,不断调整日地引力常数,缩放月地切线速度,一直没成功,直到考虑到月球引力作用,才瞬间豁然开朗。

  2. 月球初速一定是在地球绕日初速的基础上进行增减的。也就是我代码中提到的 “月球是地球抛落物” 基于这个假说进行的(二体同源)。
    当然也可以采用 “捕获说” ,但实验下来会发现,月球的初速对实验结果影响很大,月球轨道很容易变成或大或小的椭圆。
    在这里插入图片描述
    月球和地球速度不能差异过大,此图为月球速度过大,导致轨道为大椭圆  

    在这里插入图片描述
    月球和地球速度不能差异过大,此图为月球速度过小,导致轨道为小椭圆  

  3. 月球不应作为地球的子对象。第一rigidbody会忽略层级关系,也就是说地球不会带动月球移动;第二也不应该用非物理系统的思想模拟地月系统。

    • 一开始就是因为我得不到正常的月绕地轨道,所以尝试了用transform更新月球和fixJoint 来绑定月球,但觉得这种方式很不物理,所以折腾了几个小时参数,才突然考虑到上面第一条问题。
  4. 本文只是实现了简单的日地月系统,没有精确确定地球月球公转周期,自转也没考虑,如果详细实现的话,就可以做成类似下面链接中所展示的太阳系模型了。

    太阳系模型

后记

经过上面的实验,基本实现了简单的日地月三体系统。还是相当好玩的。至于月球对地球引力是不是实验中所展示的那样重要,可能还需要更多理论学习才能明白。

延申阅读

  • 太阳对月球的引力比地球大两倍多,为什么月球没有被太阳吸过去?
  • 太阳对月球的引力是地球2.2倍,为啥月亮没被太阳抢走?

当然未来有时间的话,还会尝试其他天体系统,比如三体运动。
请添加图片描述
三体问题  

物理系统的话不久将会更新,内容还是比较多的,本节因为比较简短独立且比较好玩,所以独立成章了。

这篇关于【Unity学习笔记】第十八 基于物理引擎的日月地系统简单实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1064534

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.