Python | C++漂移扩散方程和无风险套利公式算法微分

2024-06-15 18:04

本文主要是介绍Python | C++漂移扩散方程和无风险套利公式算法微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯漂移扩散方程计算微分 | 🎯期权无风险套利公式计算微分 | 🎯实现图结构算法微分 | 🎯实现简单正向和反向计算微分 | 🎯实现简单回归分类和生成对抗网络计算微分 | 🎯几何网格计算微分

🍇Python和C++计算微分正反向累积

算法微分在机器学习领域尤为重要。例如,它允许人们在神经网络中实现反向传播,而无需手动计算导数。

计算微分的基础是复合函数偏导数链式法则提供的微分分解。简单结构如:
y = f ( g ( h ( x ) ) ) = f ( g ( h ( w 0 ) ) ) = f ( g ( w 1 ) ) = f ( w 2 ) = w 3 w 0 = x w 1 = h ( w 0 ) w 2 = g ( w 1 ) w 3 = f ( w 2 ) = y \begin{aligned} y & =f(g(h(x)))=f\left(g\left(h\left(w_0\right)\right)\right)=f\left(g\left(w_1\right)\right)=f\left(w_2\right)=w_3 \\ w_0 & =x \\ w_1 & =h\left(w_0\right) \\ w_2 & =g\left(w_1\right) \\ w_3 & =f\left(w_2\right)=y \end{aligned} yw0w1w2w3=f(g(h(x)))=f(g(h(w0)))=f(g(w1))=f(w2)=w3=x=h(w0)=g(w1)=f(w2)=y
由链式法则得出:
∂ y ∂ x = ∂ y ∂ w 2 ∂ w 2 ∂ w 1 ∂ w 1 ∂ x = ∂ f ( w 2 ) ∂ w 2 ∂ g ( w 1 ) ∂ w 1 ∂ h ( w 0 ) ∂ x \frac{\partial y}{\partial x}=\frac{\partial y}{\partial w_2} \frac{\partial w_2}{\partial w_1} \frac{\partial w_1}{\partial x}=\frac{\partial f\left(w_2\right)}{\partial w_2} \frac{\partial g\left(w_1\right)}{\partial w_1} \frac{\partial h\left(w_0\right)}{\partial x} xy=w2yw1w2xw1=w2f(w2)w1g(w1)xh(w0)
通常,存在两种不同的计算微分模式:正向累积和反向累积。

正向累积指定从内到外遍历链式法则(即首先计算 ∂ w 1 / ∂ x \partial w_1 / \partial x w1/x,然后计算 ∂ w 2 / ∂ w 1 \partial w_2 / \partial w_1 w2/w1,最后计算 ∂ y / ∂ w 2 \partial y / \partial w_2 y/w2 ),而反向累积是从外到内的遍历(首先计算 ∂ y / ∂ w 2 \partial y / \partial w_2 y/w2,然后计算 ∂ w 2 / ∂ w 1 \partial w_2 / \partial w_1 w2/w1,最后计算 ∂ w 1 / ∂ x \partial w_1 / \partial x w1/x​)。更简洁地说,

正向累积计算递归关系: ∂ w i ∂ x = ∂ w i ∂ w i − 1 ∂ w i − 1 ∂ x \frac{\partial w_i}{\partial x}=\frac{\partial w_i}{\partial w_{i-1}} \frac{\partial w_{i-1}}{\partial x} xwi=wi1wixwi1 w 3 = y w_3=y w3=y

反向累积计算递归关系: ∂ y ∂ w i = ∂ y ∂ w i + 1 ∂ w i + 1 ∂ w i \frac{\partial y}{\partial w_i}=\frac{\partial y}{\partial w_{i+1}} \frac{\partial w_{i+1}}{\partial w_i} wiy=wi+1ywiwi+1 w 0 = x w_0=x w0=x

正向累积在一次传递中计算函数和导数(但每个仅针对一个独立变量)。相关方法调用期望表达式 Z 相对于变量 V 导出。该方法返回一对已求值的函数及其导数。该方法递归遍历表达式树,直到到达变量。如果请求相对于此变量的导数,则其导数为 1,否则为 0。然后求偏函数以及偏导数。

伪代码:

tuple<float,float> evaluateAndDerive(Expression Z, Variable V) {if isVariable(Z)if (Z = V) return {valueOf(Z), 1};else return {valueOf(Z), 0};else if (Z = A + B){a, a'} = evaluateAndDerive(A, V);{b, b'} = evaluateAndDerive(B, V);return {a + b, a' + b'};else if (Z = A - B){a, a'} = evaluateAndDerive(A, V);{b, b'} = evaluateAndDerive(B, V);return {a - b, a' - b'};else if (Z = A * B){a, a'} = evaluateAndDerive(A, V);{b, b'} = evaluateAndDerive(B, V);return {a * b, b * a' + a * b'};
}

Python实现正向累积:

class ValueAndPartial:def __init__(self, value, partial):self.value = valueself.partial = partialdef toList(self):return [self.value, self.partial]class Expression:def __add__(self, other):return Plus(self, other)def __mul__(self, other):return Multiply(self, other)class Variable(Expression):def __init__(self, value):self.value = valuedef evaluateAndDerive(self, variable):partial = 1 if self == variable else 0return ValueAndPartial(self.value, partial)class Plus(Expression):def __init__(self, expressionA, expressionB):self.expressionA = expressionAself.expressionB = expressionBdef evaluateAndDerive(self, variable):valueA, partialA = self.expressionA.evaluateAndDerive(variable).toList()valueB, partialB = self.expressionB.evaluateAndDerive(variable).toList()return ValueAndPartial(valueA + valueB, partialA + partialB)class Multiply(Expression):def __init__(self, expressionA, expressionB):self.expressionA = expressionAself.expressionB = expressionBdef evaluateAndDerive(self, variable):valueA, partialA = self.expressionA.evaluateAndDerive(variable).toList()valueB, partialB = self.expressionB.evaluateAndDerive(variable).toList()return ValueAndPartial(valueA * valueB, valueB * partialA + valueA * partialB)# Example: Finding the partials of z = x * (x + y) + y * y at (x, y) = (2, 3)
x = Variable(2)
y = Variable(3)
z = x * (x + y) + y * y
xPartial = z.evaluateAndDerive(x).partial
yPartial = z.evaluateAndDerive(y).partial
print("∂z/∂x =", xPartial)  # Output: ∂z/∂x = 7
print("∂z/∂y =", yPartial)  # Output: ∂z/∂y = 8

C++实现正向累积:

#include <iostream>
struct ValueAndPartial { float value, partial; };
struct Variable;
struct Expression {virtual ValueAndPartial evaluateAndDerive(Variable *variable) = 0;
};
struct Variable: public Expression {float value;Variable(float value): value(value) {}ValueAndPartial evaluateAndDerive(Variable *variable) {float partial = (this == variable) ? 1.0f : 0.0f;return {value, partial};}
};
struct Plus: public Expression {Expression *a, *b;Plus(Expression *a, Expression *b): a(a), b(b) {}ValueAndPartial evaluateAndDerive(Variable *variable) {auto [valueA, partialA] = a->evaluateAndDerive(variable);auto [valueB, partialB] = b->evaluateAndDerive(variable);return {valueA + valueB, partialA + partialB};}
};
struct Multiply: public Expression {Expression *a, *b;Multiply(Expression *a, Expression *b): a(a), b(b) {}ValueAndPartial evaluateAndDerive(Variable *variable) {auto [valueA, partialA] = a->evaluateAndDerive(variable);auto [valueB, partialB] = b->evaluateAndDerive(variable);return {valueA * valueB, valueB * partialA + valueA * partialB};}
};
int main () {// Example: Finding the partials of z = x * (x + y) + y * y at (x, y) = (2, 3)Variable x(2), y(3);Plus p1(&x, &y); Multiply m1(&x, &p1); Multiply m2(&y, &y); Plus z(&m1, &m2);float xPartial = z.evaluateAndDerive(&x).partial;float yPartial = z.evaluateAndDerive(&y).partial;std::cout << "∂z/∂x = " << xPartial << ", "<< "∂z/∂y = " << yPartial << std::endl;// Output: ∂z/∂x = 7, ∂z/∂y = 8return 0;
}

反向累积需要两次传递:在正向传递中,首先评估函数并缓存部分结果。在反向传递中,计算偏导数并反向传播先前导出的值。相应的方法调用期望表达式 Z 被导出,并以父表达式的导出值为种子。对于顶部表达式 Z 相对于 Z 导出,这是 1。该方法递归遍历表达式树,直到到达变量并将当前种子值添加到导数表达式。

伪代码:

void derive(Expression Z, float seed) {if isVariable(Z)partialDerivativeOf(Z) += seed;else if (Z = A + B)derive(A, seed);derive(B, seed);else if (Z = A - B)derive(A, seed);derive(B, -seed);else if (Z = A * B)derive(A, valueOf(B) * seed);derive(B, valueOf(A) * seed);
}

Python实现反向累积:

class Expression:def __add__(self, other):return Plus(self, other)def __mul__(self, other):return Multiply(self, other)class Variable(Expression):def __init__(self, value):self.value = valueself.partial = 0def evaluate(self):passdef derive(self, seed):self.partial += seedclass Plus(Expression):def __init__(self, expressionA, expressionB):self.expressionA = expressionAself.expressionB = expressionBself.value = Nonedef evaluate(self):self.expressionA.evaluate()self.expressionB.evaluate()self.value = self.expressionA.value + self.expressionB.valuedef derive(self, seed):self.expressionA.derive(seed)self.expressionB.derive(seed)class Multiply(Expression):def __init__(self, expressionA, expressionB):self.expressionA = expressionAself.expressionB = expressionBself.value = Nonedef evaluate(self):self.expressionA.evaluate()self.expressionB.evaluate()self.value = self.expressionA.value * self.expressionB.valuedef derive(self, seed):self.expressionA.derive(self.expressionB.value * seed)self.expressionB.derive(self.expressionA.value * seed)# Example: Finding the partials of z = x * (x + y) + y * y at (x, y) = (2, 3)
x = Variable(2)
y = Variable(3)
z = x * (x + y) + y * y
z.evaluate()
print("z =", z.value)        # Output: z = 19
z.derive(1)
print("∂z/∂x =", x.partial)  # Output: ∂z/∂x = 7
print("∂z/∂y =", y.partial)  # Output: ∂z/∂y = 8

C++实现反向累积:

#include <iostream>
struct Expression {float value;virtual void evaluate() = 0;virtual void derive(float seed) = 0;
};
struct Variable: public Expression {float partial;Variable(float _value) {value = _value;partial = 0;}void evaluate() {}void derive(float seed) {partial += seed;}
};
struct Plus: public Expression {Expression *a, *b;Plus(Expression *a, Expression *b): a(a), b(b) {}void evaluate() {a->evaluate();b->evaluate();value = a->value + b->value;}void derive(float seed) {a->derive(seed);b->derive(seed);}
};
struct Multiply: public Expression {Expression *a, *b;Multiply(Expression *a, Expression *b): a(a), b(b) {}void evaluate() {a->evaluate();b->evaluate();value = a->value * b->value;}void derive(float seed) {a->derive(b->value * seed);b->derive(a->value * seed);}
};
int main () {// Example: Finding the partials of z = x * (x + y) + y * y at (x, y) = (2, 3)Variable x(2), y(3);Plus p1(&x, &y); Multiply m1(&x, &p1); Multiply m2(&y, &y); Plus z(&m1, &m2);z.evaluate();std::cout << "z = " << z.value << std::endl;// Output: z = 19z.derive(1);std::cout << "∂z/∂x = " << x.partial << ", "<< "∂z/∂y = " << y.partial << std::endl;// Output: ∂z/∂x = 7, ∂z/∂y = 8return 0;
}

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python | C++漂移扩散方程和无风险套利公式算法微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064176

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.