QLoRA:高效的LLMs微调方法,48G内存可调65B 模型

2024-06-15 17:04

本文主要是介绍QLoRA:高效的LLMs微调方法,48G内存可调65B 模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章:https://arxiv.org/pdf/2305.14314.pdf
代码:https://github.com/artidoro/qlora

概括

QLORA是一种有效的微调方法,它减少了内存使用,足以在单个48GB GPU上微调65B参数模型,同时保留完整的16位微调任务性能。QLORA通过冻结的4位量化预训练语言模型将梯度反向传播到低秩适配器(Low Rank Adapters, LoRA)。Guanaco模型在Vicuna基准上优于之前所有公开发布的模型,达到ChatGPT性能水平的99.3%,而只需要在单个GPU上进行24小时的微调。使用QLORA对1000多个模型进行了微调,提供了8个指令数据集、多种模型类型(LLaMA、T5)和常规微调无法运行的模型规模(例如33B和65B参数模型)上的指令跟随和聊天机器人性能的详细分析。结果表明,即使使用比以前的SoTA更小的模型,在小的高质量数据集上进行QLoRA微调也可以得到最先进的结果。

一句话总结:基于LoRA微调技术引入深度量化,在不损失模型精度的前提下加大的降低了训练成本。

微调原理与创新点

引入三个创新点

(a) 4位NormalFloat (NF4),这是一种新的数据类型,理论上对正态分布权重是最优的;比4位整数和4位浮点数产生更好的经验结果。
(b) 双量化,通过量化常量来减少平均内存占用;每个参数平均节省约0.37比特(65B型号约为3gb)。

© 分页优化器,使用NVIDIA统一内存,以避免处理具有长序列长度的小批量时发生的梯度检查点内存峰值。

图片

不同的调优方法及其内存需求。QLORA通过将转换器模型量化到4位精度并使用分页优化器处理内存峰值来改进LoRA。

QLORA包含两个组件:4-bit NormalFloat量化和Double Quantization。其中:4-bit NormalFloat数据类型是基于Quantile Quantization技术开发的,通过估计输入张量的分位数来保证每个量化区间分配相等的值。Double Quantization是将额外的量化常数进行量化以减小内存开销的过程。为了防止梯度检查点所引起的内存波动导致的内存不足错误,QLORA引入了Paged Optimizers技术。这种技术使用了NVIDIA统一内存的特性,实现了CPU和GPU之间自动的页面转换,在GPU内存不足的情况下自动将优化器状态转移到CPU内存。QLORA通常使用4位NormalFloat作为存储数据类型和16位BrainFloat作为计算数据类型,在计算梯度时只对LoRA的参数计算梯度。

实验结果

图片

使用不同4位数据类型的LLaMA模型,在Winogrande, HellaSwag, PiQA, Arc-Easy和ArcChallenge上的平均zero-shot精度。**与常规的4位浮点数相比,NormalFloat数据类型显著提高了逐位精度增益。**虽然双量化(DQ)只带来很小的收益,它允许对内存占用进行更细粒度的控制,以适应特定大小(33B/65B)的模型到特定的gpu (24/48GB)。

图片

在Alpaca和FLAN v2上对不同数据类型的适配器进行微调后,LLaMA 7-65B模型的平均5次MMLU测试精度。总体而言,具有双量化(DQ)的NF4与BFloat16性能相当,而FP4始终比两者落后一个百分点。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

这篇关于QLoRA:高效的LLMs微调方法,48G内存可调65B 模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064046

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir