从入门到高手的99个python案例(2)

2024-06-15 16:04
文章标签 python 入门 案例 99 高手

本文主要是介绍从入门到高手的99个python案例(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

51. 列表和数组比较 - 列表通用,NumPy数组高效。

import numpy as np  normal_list = [1, 2, 3]  
np_array = np.array([1, 2, 3])  
print(np_array.shape)  # 输出 (3,), 数组有形状信息  

52. Python的内置模块datetime - 处理日期和时间。

from datetime import datetime  
now = datetime.now()  
print(now.strftime("%Y-%m-%d %H:%M:%S"))  

53. Python的os模块 - 操作文件和目录。

import os  
print(os.getcwd())  # 输出当前工作目录  

54. 列表推导式中的条件和循环 - 结合使用。

evens = [x for x in range(10) if x % 2 == 0 for y in range(5) if y % 2 == 0]  
print(evens)  

55. 迭代器和生成器的使用场景 - 数据处理和节省内存。

# 使用生成器处理大文件  
def read_large_file(file_path, chunk_size=1024):  with open(file_path, "r") as file:  while True:  chunk = file.read(chunk_size)  if not chunk:  break  yield chunk  for line in read_large_file("large.txt"):  process(line)  

56. zip()函数 - 同时遍历多个序列。

names = ["Alice", "Bob", "Charlie"]  
ages = [25, 30, 35]  
pairs = zip(names, ages)  
print(list(pairs))  # 输出 [('Alice', 25), ('Bob', 30), ('Charlie', 35)]  

57. enumerate()函数 - 为列表元素添加索引。

fruits = ["apple", "banana", "cherry"]  
for index, fruit in enumerate(fruits):  print(f"{index}: {fruit}")  

58. itertools模块 - 提供高效迭代工具。

from itertools import product  
result = product("ABC", repeat=2)  
print(list(result))  # 输出 [('A', 'A'), ('A', 'B'), ('A', 'C'), ..., ('C', 'C')]  

59. json模块 - 序列化和反序列化数据。

import json  
data = {"name": "Alice", "age": 25}  
json_data = json.dumps(data)  
print(json_data)  

60. 递归函数 - 用于解决分治问题。

def factorial(n):  if n == 0 or n == 1:  return 1  else:  return n * factorial(n - 1)  print(factorial(5))  # 输出 120  

61. os.path模块 - 文件路径处理。

import os.path  
path = "/home/user/documents"  
print(os.path.exists(path))  # 输出 True 或 False  

62. random模块 - 随机数生成。

import random  
random_number = random.randint(1, 10)  
print(random_number)  

63. re模块 - 正则表达式操作。

import re  
text = "Today is 2023-04-01"  
match = re.search(r"\d{4}-\d{2}-\d{2}", text)  
print(match.group())  # 输出 "2023-04-01"  

64. requests - 发送HTTP请求。

import requests  
response = requests.get("https://api.example.com")  
print(response.status_code)  

65. Pandas - 大数据处理。

import pandas as pd  
df = pd.DataFrame({"Name": ["Alice", "Bob"], "Age": [25, 30]})  
print(df)  

66. matplotlib - 数据可视化。

import matplotlib.pyplot as plt  
plt.plot([1, 2, 3, 4])  
plt.show()  

67. logging模块 - 日志记录。

import logging  
logger = logging.getLogger(__name__)  
logger.info("This is an info message")  

68. asyncio - 异步编程。

import asyncio  
async def slow_task():  await asyncio.sleep(1)  return "Task completed"  loop = asyncio.get_event_loop()  
result = loop.run_until_complete(slow_task())  
print(result)  

69. contextlib模块 - 非阻塞上下文管理。

from contextlib import asynccontextmanager  
@asynccontextmanager  
async def acquire_lock(lock):  async with lock:  yield  async with acquire_lock(lock):  # do something  

70. asyncio.gather - 异步并发执行。

tasks = [asyncio.create_task(task) for task in tasks_to_run]  
results = await asyncio.gather(*tasks)  

71. asyncio.sleep - 异步等待一段时间。

await asyncio.sleep(2)  # 程序在此暂停2秒  

72. asyncio.wait - 等待多个任务完成。

done, pending = await asyncio.wait(tasks, timeout=10)  

73. asyncio.subprocess - 异步执行外部命令。

import asyncio.subprocess as sp  
proc = await sp.create_subprocess_exec("ls", "-l")  
await proc.communicate()  

74. concurrent.futures - 多线程/进程执行。

from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor  with ThreadPoolExecutor() as executor:  results = executor.map(function, arguments)  

75. timeit模块 - 测试代码执行速度。

import timeit  
print(timeit.timeit("your_code_here", globals=globals()))  

76. pickle模块 - 序列化和反序列化对象。

import pickle  
serialized = pickle.dumps(obj)  
deserialized = pickle.loads(serialized)  

77. logging.handlers模块 - 多种日志输出方式。

handler = RotatingFileHandler("app.log", maxBytes=1000000)  
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")  
handler.setFormatter(formatter)  
logger.addHandler(handler)  

78. asyncio.Queue - 异步队列。

queue = asyncio.Queue()  
await queue.put(item)  
result = await queue.get()  

79. asyncio.Event - 异步信号量。

event = asyncio.Event()  
event.set()  # 设置信号  
await event.wait()  # 等待信号  

80. asyncio.Lock - 互斥锁,防止并发修改。

async with await asyncio.Lock():  # 获取锁后执行  critical_section()  

81. asyncio.gatherasyncio.wait_for的区别 - 异步任务管理。

  • gather: 并行执行多个任务,等待所有任务完成。

  • wait_for: 等待单个任务完成,其他任务继续运行。

82. asyncio.sleepasyncio.sleep_after - 异步延时和定时任务。

  • sleep: 直接暂停当前协程。

  • sleep_after: 定义一个延迟后执行的任务。

83. aiohttp - HTTP客户端库。

import aiohttp  
async with aiohttp.ClientSession() as session:  async with session.get("https://example.com") as response:  data = await response.text()  

84. asyncio.shield - 防止被取消任务中断。

async def task():  await shield(some_long_running_task())  # 如果外部取消任务,task将继续运行,不会影响内部任务  
asyncio.create_task(task())  

85. asyncio.run - 简化异步程序执行。

asyncio.run(main_coroutine())  

86. asyncio.iscoroutinefunction - 检查是否为协程函数。

if asyncio.iscoroutinefunction(some_function):  await some_function()  

87. asyncio.all_tasks - 获取所有任务。

tasks = asyncio.all_tasks()  
for task in tasks:  task.cancel()  

88. asyncio.wait_forasyncio.timeout - 设置超时限制。

try:  result = await asyncio.wait_for(some_task, timeout=5.0)  
except asyncio.TimeoutError:  print("Task timed out")  

89. asyncio.sleep_timeout - 异步睡眠并设置超时。

await asyncio.sleep_timeout(10, asyncio.TimeoutError)  

90. asyncio.current_task - 获取当前正在执行的任务。

current_task = asyncio.current_task()  
print(current_task)  

91. asyncio.sleep的超时支持 - asyncio.sleep现在接受超时参数。

try:  await asyncio.sleep(1, timeout=0.5)  # 如果超过0.5秒还没完成,则会抛出TimeoutError  
except asyncio.TimeoutError:  print("Sleep interrupted")  

92. asyncio.shield的高级用法 - 可以保护整个协程。

@asyncio.coroutine  
def protected_coroutine():  try:  await some_task()  except Exception as e:  print(f"Error occurred: {e}")  # 使用shield保护,即使外部取消任务,也会继续处理错误  asyncio.create_task(protected_coroutine())  

93. asyncio.wait的回调函数 - 使用回调函数处理完成任务。

done, _ = await asyncio.wait(tasks, callback=handle_completed_task)  

94. asyncio.gather的返回值 - 可以获取所有任务的结果。

results = await asyncio.gather(*tasks)  

95. asyncio.Queueget_nowait - 不阻塞获取队列元素。

if not queue.empty():  item = queue.get_nowait()  
else:  item = await queue.get()  

96. asyncio.Eventclear - 清除事件状态。

event.clear()  
await event.wait()  # 现在需要再次调用set()来触发  

97. asyncio.Eventis_set - 检查事件是否已设置。

if event.is_set():  print("Event is set")  

98. asyncio.subprocess.PIPE - 连接到子进程的输入/输出管道。

proc = await asyncio.create_subprocess_exec(  "python", "-c", "print('Hello from child')", stdout=asyncio.subprocess.PIPE  
)  
output, _ = await proc.communicate()  
print(output.decode())  

99. asyncio.run_coroutine_threadsafe - 在子线程中执行协程。

loop = asyncio.get_running_loop()  
future = loop.run_coroutine_threadsafe(some_async_coroutine(), thread_pool)  
result = await future.result()  

好了,今天就这些了,希望对大家有帮助。都看到这了,点个赞再走吧~

最后这里免费分享给大家一份Python全台学习资料,包含视频、源码。课件,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,也可以和我一起来学习交流呀。
编程资料、学习路线图、源代码、软件安装包等!【点击这里】领取!
Python所有方向的学习路线图,清楚各个方向要学什么东西
100多节Python课程视频,涵盖必备基础、爬虫和数据分析
100多个Python实战案例,学习不再是只会理论
华为出品独家Python漫画教程,手机也能学习
历年互联网企业Python面试真题,复习时非常方便

这篇关于从入门到高手的99个python案例(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063917

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数