Canny边缘检测算法原理及其VC实现详解(三)

2024-06-15 13:08

本文主要是介绍Canny边缘检测算法原理及其VC实现详解(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:http://blog.csdn.net/likezhaobin/article/details/6892629

3.3 图像增强——计算图像梯度及其方向

      根据上文分析可知,实现代码如下
  1. //同样可以用不同的检测器/  
  2.    P[i,j]=(S[i,j+1]-S[i,j]+S[i+1,j+1]-S[i+1,j])/2     /  
  3.    Q[i,j]=(S[i,j]-S[i+1,j]+S[i,j+1]-S[i+1,j+1])/2     /  
  4. /  
  5. doublenew double[nWidth*nHeight];                 //x向偏导数  
  6. doublenew double[nWidth*nHeight];                 //y向偏导数  
  7. intnew int[nWidth*nHeight];                       //梯度幅值  
  8. doubleTheta new double[nWidth*nHeight];             //梯度方向  
  9. //计算x,y方向的偏导数  
  10. for(i=0; i<(nHeight-1); i++)  
  11.  
  12.         for(j=0; j<(nWidth-1); j++)  
  13.          
  14.               P[i*nWidth+j] (double)(pCanny[i*nWidth min(j+1, nWidth-1)] pCanny[i*nWidth+j] pCanny[min(i+1, nHeight-1)*nWidth+min(j+1, nWidth-1)] pCanny[min(i+1, nHeight-1)*nWidth+j])/2;  
  15.               Q[i*nWidth+j] (double)(pCanny[i*nWidth+j] pCanny[min(i+1, nHeight-1)*nWidth+j] pCanny[i*nWidth+min(j+1, nWidth-1)] pCanny[min(i+1, nHeight-1)*nWidth+min(j+1, nWidth-1)])/2;  
  16.      
  17.  
  18. //计算梯度幅值和梯度的方向  
  19. for(i=0; i<nHeight; i++)  
  20.  
  21.         for(j=0; j<nWidth; j++)  
  22.          
  23.               M[i*nWidth+j] (int)(sqrt(P[i*nWidth+j]*P[i*nWidth+j] Q[i*nWidth+j]*Q[i*nWidth+j])+0.5);  
  24.               Theta[i*nWidth+j] atan2(Q[i*nWidth+j], P[i*nWidth+j]) 57.3;  
  25.               if(Theta[i*nWidth+j] 0)  
  26.                     Theta[i*nWidth+j] += 360;              //将这个角度转换到0~360范围  
  27.      
  28.  


3.4 非极大值抑制

      根据上文所述的工作原理,这部分首先需要求解每个像素点在其邻域内的梯度方向的两个灰度值,然后判断是否为潜在的边缘,如果不是则将该点灰度值设置为0.

      首先定义相关的参数如下:

 

  1. unsigned charnew unsigned char[nWidth*nHeight];  //非极大值抑制结果  
  2. int g1=0, g2=0, g3=0, g4=0;                            //用于进行插值,得到亚像素点坐标值  
  3. double dTmp1=0.0, dTmp2=0.0;                           //保存两个亚像素点插值得到的灰度数据  
  4. double dWeight=0.0;                                    //插值的权重  
      其次,对边界进行初始化:

 

  1. for(i=0; i<nWidth; i++)  
  2.  
  3.         N[i] 0;  
  4.         N[(nHeight-1)*nWidth+i] 0;  
  5.  
  6. for(j=0; j<nHeight; j++)  
  7.  
  8.         N[j*nWidth] 0;  
  9.         N[j*nWidth+(nWidth-1)] 0;  
  10.  
      进行局部最大值寻找,根据上文图1所述的方案进行插值,然后判优,实现代码如下:
  1. for(i=1; i<(nWidth-1); i++)  
  2.  
  3.     for(j=1; j<(nHeight-1); j++)  
  4.      
  5.         int nPointIdx i+j*nWidth;       //当前点在图像数组中的索引值  
  6.         if(M[nPointIdx] == 0)  
  7.             N[nPointIdx] 0;         //如果当前梯度幅值为0,则不是局部最大对该点赋为0  
  8.         else  
  9.          
  10.         首先判断属于那种情况,然后根据情况插值///  
  11.         第一种情况///  
  12.               g1  g2                  /  
  13.                                     /  
  14.                   g3  g4              /  
  15.         /  
  16.         if((Theta[nPointIdx]>=90)&&(Theta[nPointIdx]<135)) ||   
  17.                 ((Theta[nPointIdx]>=270)&&(Theta[nPointIdx]<315)))  
  18.              
  19.                 //根据斜率和四个中间值进行插值求解  
  20.                 g1 M[nPointIdx-nWidth-1];  
  21.                 g2 M[nPointIdx-nWidth];  
  22.                 g3 M[nPointIdx+nWidth];  
  23.                 g4 M[nPointIdx+nWidth+1];  
  24.                 dWeight fabs(P[nPointIdx])/fabs(Q[nPointIdx]);   //反正切  
  25.                 dTmp1 g1*dWeight+g2*(1-dWeight);  
  26.                 dTmp2 g4*dWeight+g3*(1-dWeight);  
  27.              
  28.         第二种情况///  
  29.               g1                      /  
  30.               g2    g3              /  
  31.                       g4              /  
  32.         /  
  33.             else if((Theta[nPointIdx]>=135)&&(Theta[nPointIdx]<180)) ||   
  34.                 ((Theta[nPointIdx]>=315)&&(Theta[nPointIdx]<360)))  
  35.              
  36.                 g1 M[nPointIdx-nWidth-1];  
  37.                 g2 M[nPointIdx-1];  
  38.                 g3 M[nPointIdx+1];  
  39.                 g4 M[nPointIdx+nWidth+1];  
  40.                 dWeight fabs(Q[nPointIdx])/fabs(P[nPointIdx]);   //正切  
  41.                 dTmp1 g2*dWeight+g1*(1-dWeight);  
  42.                 dTmp2 g4*dWeight+g3*(1-dWeight);  
  43.              
  44.         第三种情况///  
  45.                   g1  g2              /  
  46.                                     /  
  47.               g4  g3                  /  
  48.         /  
  49.             else if((Theta[nPointIdx]>=45)&&(Theta[nPointIdx]<90)) ||   
  50.                 ((Theta[nPointIdx]>=225)&&(Theta[nPointIdx]<270)))  
  51.              
  52.                 g1 M[nPointIdx-nWidth];  
  53.                 g2 M[nPointIdx-nWidth+1];  
  54.                 g3 M[nPointIdx+nWidth];  
  55.                 g4 M[nPointIdx+nWidth-1];  
  56.                 dWeight fabs(P[nPointIdx])/fabs(Q[nPointIdx]);   //反正切  
  57.                 dTmp1 g2*dWeight+g1*(1-dWeight);  
  58.                 dTmp2 g3*dWeight+g4*(1-dWeight);  
  59.              
  60.             第四种情况///  
  61.                           g1              /  
  62.                   g4    g2              /  
  63.                   g3                      /  
  64.             /  
  65.             else if((Theta[nPointIdx]>=0)&&(Theta[nPointIdx]<45)) ||   
  66.                 ((Theta[nPointIdx]>=180)&&(Theta[nPointIdx]<225)))  
  67.              
  68.                 g1 M[nPointIdx-nWidth+1];  
  69.                 g2 M[nPointIdx+1];  
  70.                 g3 M[nPointIdx+nWidth-1];  
  71.                 g4 M[nPointIdx-1];  
  72.                 dWeight fabs(Q[nPointIdx])/fabs(P[nPointIdx]);   //正切  
  73.                 dTmp1 g1*dWeight+g2*(1-dWeight);  
  74.                 dTmp2 g3*dWeight+g4*(1-dWeight);  
  75.              
  76.                 
  77.         //进行局部最大值判断,并写入检测结果  
  78.         if((M[nPointIdx]>=dTmp1) && (M[nPointIdx]>=dTmp2))  
  79.             N[nPointIdx] 128;  
  80.         else  
  81.             N[nPointIdx] 0;  
  82.          
  83.  

这篇关于Canny边缘检测算法原理及其VC实现详解(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063539

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函