G6 - CycleGAN实战

2024-06-15 05:28
文章标签 实战 cyclegan g6

本文主要是介绍G6 - CycleGAN实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客
  • 🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)

目录

  • 理论知识
    • CycleGAN能做什么
  • 模型结构
    • 损失函数
  • 模型效果
  • 总结与心得体会


理论知识

CycleGAN能做什么

CycleGAN的一个重要的应用领域就是Domain Adapation(域迁移:可以通俗的理解 为画风迁移)。

比如可以把一张普通的风景照变化成梵高的画作,或者将游戏画面变化成真实世界的画面,将一匹正常肤色的马转换为斑马等。
在这里插入图片描述

模型结构

CycleGAN由左右两个GAN网络组成。

G(AB)负责把A类物体(斑马)转换成B类物体(正常的马)
G(BA)负责把B类物体(正常的马)还原成A类物体(斑马)

然后由一个判别器网络D来判别B类物体的真实性

损失函数

CycleGAN的Loss由三部分组成,即:
L o s s = L o s s G A N + L o s s c y c l e + L o s s i d e n t i t y Loss=Loss_{GAN}+Loss_{cycle}+Loss_{identity} Loss=LossGAN+Losscycle+Lossidentity
其中:

  • L o s s G A N Loss_{GAN} LossGAN 用于保证生成器和判别器相互进货,进行保证生成器能产生更真实的图片,这部分与其它的GAN网络无异。
  • L o s s c y c l e Loss_{cycle} Losscycle 用于保证生成器的输出图片与输入图片只是风格不同,而内容相同。即保证:将由图像 x x x生成的图像 Y ^ \hat{Y} Y^再放入生成器 F F F中,使生成的图像 x ^ \hat{x} x^尽可能与原始图像 x x x相似。
  • L o s s i d e n t i t y Loss_{identity} Lossidentity 是映射损失,即用真实的A当做输入,查看生成器是否会原封不到的输出

三种损失函数所捕捉的损失类型如图所示:
三种不同的损失函数

模型效果

直接下载UP提供的软件包,解压data.zip和cyclegan.zip

通过执行 python cyclegan.py来训练模型,默认参数是训练400个epoch需要训练一天时间以上,我们临时修改为训练4个epoch

# 还需要设置一下开始衰减的epoch,只要比n_epochs小就好,这里设置为2
python cyclegan.py --n_epochs 4 --decay_epoch 2

运行日志

模型效果
由于训练时间太短,只是稍微有些莫奈的味道

总结与心得体会

通过对CycleGAN的学习,我理解CycleGAN其实是训练了较前作来说是完整的GAN模型,G模型用来做从通过A生成B,F模型用来做通过B生成A。如果只是分别看GAN的损失,的确是两个不相关的模型,但是作者通过Cycle损失和Identity损失,将两个模型联合在一起进行训练,训练好的生成器G和生成器F就可以实现相反的两种转换。

通过前面的视频也可以看出,不同的帧之间,不一定具有一致性, 所以将一个图像模型直接转换为视频模型,有一个需要考虑的点就是前后帧的一致性问题,这应该是视频生成模型的共性问题。

这篇关于G6 - CycleGAN实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062547

相关文章

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.