【Python/Pytorch - 网络模型】-- 手把手搭建E3D LSTM网络

2024-06-15 03:36

本文主要是介绍【Python/Pytorch - 网络模型】-- 手把手搭建E3D LSTM网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
文章目录

文章目录

  • 00 写在前面
  • 01 基于Pytorch版本的E3D LSTM代码
  • 02 论文下载

00 写在前面

测试代码,比较重要,它可以大概判断tensor维度在网络传播过程中,各个维度的变化情况,方便改成适合自己的数据集。

需要github上的数据集以及可运行的代码,可以私聊!

01 基于Pytorch版本的E3D LSTM代码

# 库函数调用
from functools import reduce
from src.utils import nice_print, mem_report, cpu_stats
import copy
import operator
import torch
import torch.nn as nn
import torch.nn.functional as F# E3DLSTM模型代码
class E3DLSTM(nn.Module):def __init__(self, input_shape, hidden_size, num_layers, kernel_size, tau):super().__init__()self._tau = tauself._cells = []input_shape = list(input_shape)for i in range(num_layers):cell = E3DLSTMCell(input_shape, hidden_size, kernel_size)# NOTE hidden state becomes input to the next cellinput_shape[0] = hidden_sizeself._cells.append(cell)# Hook to register submodulesetattr(self, "cell{}".format(i), cell)def forward(self, input):# NOTE (seq_len, batch, input_shape)batch_size = input.size(1)c_history_states = []h_states = []outputs = []for step, x in enumerate(input):for cell_idx, cell in enumerate(self._cells):if step == 0:c_history, m, h = self._cells[cell_idx].init_hidden(batch_size, self._tau, input.device)c_history_states.append(c_history)h_states.append(h)# NOTE c_history and h are coming from the previous time stamp, but we iterate over cellsc_history, m, h = cell(x, c_history_states[cell_idx], m, h_states[cell_idx])c_history_states[cell_idx] = c_historyh_states[cell_idx] = h# NOTE hidden state of previous LSTM is passed as input to the next onex = houtputs.append(h)# NOTE Concat along the channelsreturn torch.cat(outputs, dim=1)class E3DLSTMCell(nn.Module):def __init__(self, input_shape, hidden_size, kernel_size):super().__init__()in_channels = input_shape[0]self._input_shape = input_shapeself._hidden_size = hidden_size# memory gates: input, cell(input modulation), forgetself.weight_xi = ConvDeconv3d(in_channels, hidden_size, kernel_size)self.weight_hi = ConvDeconv3d(hidden_size, hidden_size, kernel_size, bias=False)self.weight_xg = copy.deepcopy(self.weight_xi)self.weight_hg = copy.deepcopy(self.weight_hi)self.weight_xr = copy.deepcopy(self.weight_xi)self.weight_hr = copy.deepcopy(self.weight_hi)memory_shape = list(input_shape)memory_shape[0] = hidden_size# self.layer_norm = nn.LayerNorm(memory_shape)self.group_norm = nn.GroupNorm(1, hidden_size) # wzj# for spatiotemporal memoryself.weight_xi_prime = copy.deepcopy(self.weight_xi)self.weight_mi_prime = copy.deepcopy(self.weight_hi)self.weight_xg_prime = copy.deepcopy(self.weight_xi)self.weight_mg_prime = copy.deepcopy(self.weight_hi)self.weight_xf_prime = copy.deepcopy(self.weight_xi)self.weight_mf_prime = copy.deepcopy(self.weight_hi)self.weight_xo = copy.deepcopy(self.weight_xi)self.weight_ho = copy.deepcopy(self.weight_hi)self.weight_co = copy.deepcopy(self.weight_hi)self.weight_mo = copy.deepcopy(self.weight_hi)self.weight_111 = nn.Conv3d(hidden_size + hidden_size, hidden_size, 1)def self_attention(self, r, c_history):batch_size = r.size(0)channels = r.size(1)r_flatten = r.view(batch_size, -1, channels)# BxtaoTHWxCc_history_flatten = c_history.view(batch_size, -1, channels)# Attention mechanism# BxTHWxC x BxtaoTHWxC' = B x THW x taoTHWscores = torch.einsum("bxc,byc->bxy", r_flatten, c_history_flatten)attention = F.softmax(scores, dim=2)return torch.einsum("bxy,byc->bxc", attention, c_history_flatten).view(*r.shape)def self_attention_fast(self, r, c_history):# Scaled Dot-Product but for tensors# instead of dot-product we do matrix contraction on twh dimensionsscaling_factor = 1 / (reduce(operator.mul, r.shape[-3:], 1) ** 0.5)scores = torch.einsum("bctwh,lbctwh->bl", r, c_history) * scaling_factorattention = F.softmax(scores, dim=0)return torch.einsum("bl,lbctwh->bctwh", attention, c_history)def forward(self, x, c_history, m, h):# Normalized shape for LayerNorm is CxT×H×Wnormalized_shape = list(h.shape[-3:])def LR(input):# return F.layer_norm(input, normalized_shape)return self.group_norm(input, normalized_shape) # wzj# R is CxT×H×Wr = torch.sigmoid(LR(self.weight_xr(x) + self.weight_hr(h)))i = torch.sigmoid(LR(self.weight_xi(x) + self.weight_hi(h)))g = torch.tanh(LR(self.weight_xg(x) + self.weight_hg(h)))recall = self.self_attention_fast(r, c_history)# nice_print(**locals())# mem_report()# cpu_stats()c = i * g + self.group_norm(c_history[-1] + recall) # wzji_prime = torch.sigmoid(LR(self.weight_xi_prime(x) + self.weight_mi_prime(m)))g_prime = torch.tanh(LR(self.weight_xg_prime(x) + self.weight_mg_prime(m)))f_prime = torch.sigmoid(LR(self.weight_xf_prime(x) + self.weight_mf_prime(m)))m = i_prime * g_prime + f_prime * mo = torch.sigmoid(LR(self.weight_xo(x)+ self.weight_ho(h)+ self.weight_co(c)+ self.weight_mo(m)))h = o * torch.tanh(self.weight_111(torch.cat([c, m], dim=1)))# TODO is it correct FIFO?c_history = torch.cat([c_history[1:], c[None, :]], dim=0)# nice_print(**locals())return (c_history, m, h)def init_hidden(self, batch_size, tau, device=None):memory_shape = list(self._input_shape)memory_shape[0] = self._hidden_sizec_history = torch.zeros(tau, batch_size, *memory_shape, device=device)m = torch.zeros(batch_size, *memory_shape, device=device)h = torch.zeros(batch_size, *memory_shape, device=device)return (c_history, m, h)class ConvDeconv3d(nn.Module):def __init__(self, in_channels, out_channels, *vargs, **kwargs):super().__init__()self.conv3d = nn.Conv3d(in_channels, out_channels, *vargs, **kwargs)# self.conv_transpose3d = nn.ConvTranspose3d(out_channels, out_channels, *vargs, **kwargs)def forward(self, input):# print(self.conv3d(input).shape, input.shape)# return self.conv_transpose3d(self.conv3d(input))return F.interpolate(self.conv3d(input), size=input.shape[-3:], mode="nearest")class Out(nn.Module):def __init__(self, in_channels, out_channels):super().__init__()self.conv = nn.Conv3d(in_channels, out_channels, kernel_size = 3, stride=1, padding=1)def forward(self, x):return self.conv(x)class E3DLSTM_NET(nn.Module):def __init__(self, input_shape, hidden_size, num_layers, kernel_size, tau, time_steps, output_shape):super().__init__()self.input_shape = input_shapeself.hidden_size = hidden_sizeself.num_layers = num_layersself.kernel_size = kernel_sizeself.tau = tauself.time_steps = time_stepsself.output_shape = output_shapeself.dtype = torch.float32self.encoder = E3DLSTM(input_shape, hidden_size, num_layers, kernel_size, tau).type(self.dtype)self.decoder = nn.Conv3d(hidden_size * time_steps, output_shape[0], kernel_size, padding=(0, 2, 2)).type(self.dtype)self.out = Out(4, 1)def forward(self, input_seq):return self.out(self.decoder(self.encoder(input_seq)))# 测试代码
if __name__ == '__main__':input_shape = (16, 4, 16, 16)output_shape = (16, 1, 16, 16)tau = 2hidden_size = 64kernel = (3, 5, 5)lstm_layers = 4time_steps = 29x = torch.ones([29, 2, 16, 4, 16, 16])model = E3DLSTM_NET(input_shape, hidden_size, lstm_layers, kernel, tau, time_steps, output_shape)print('finished!')f = model(x)print(f)

02 论文下载

Eidetic 3D LSTM: A Model for Video Prediction and Beyond
Eidetic 3D LSTM: A Model for Video Prediction and Beyond
Github链接:e3d_lstm

这篇关于【Python/Pytorch - 网络模型】-- 手把手搭建E3D LSTM网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062319

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚