C/C++中.bss段的解释

2024-06-15 02:32
文章标签 c++ 解释 bss

本文主要是介绍C/C++中.bss段的解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BSS(Block Started by Symbol)这个词最初是UA-SAP汇编器(United Aircraft Symbolic Assembly Program)中的一个伪指令,用于为符号预留一块内存空间。该汇编器由美国联合航空公司于20世纪50年代中期为IBM 704大型机所开发。

后来BSS这个词被作为关键字引入到了IBM 709和7090/94机型上的标准汇编器FAP(Fortran Assembly Program),用于定义符号并且为该符号预留给定数量的未初始化空间。

Unix FAQ section 1.3(http://www.faqs.org/faqs/unix-faq/faq/part1/section-3.html)里面有Unix和C语言之父Dennis Rithcie对BSS这个词由来的解释。

一般C语言的编译后执行语句都编译成机器代码,保存在.text段;已初始化的全局变量和局部静态变量都保存在. data段;未初始化的全局变量和局部静态变量一般放在一个叫.“bss”的段里。我们知道未初始化的全局变量和局部静态变量默认值都为0,本来它们也可以被放在.data段的,但是因为它们都是0,所以为它们在.data段分配空间并且存放数据0是没有必要的。程序运行的时候它们的确是要占内存空间的,并且可执行文件必须记录所有未初始化的全局变量和局部静态变量的大小总和,记为.bss段。所以.bss段只是为未初始化的全局变量和局部静态变量预留位置而已,它并没有内容,所以它在文件中也不占据空间。

   数据段包含经过初始化的全局变量以及它们的值。BSS段的大小从可执行文件中得到,然后链接器得到这个大小的内存块,紧跟在数据段后面。当这个内存区进入程序的地址空间后全部清零。包含数据段和BSS段的整个区段此时通常称为数据区。

    在采用段式内存管理的架构中(比如intel的80x86系统),bss段(Block Started by Symbol segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域,一般在初始化时bss 段部分将会清零。bss段属于静态内存分配,即程序一开始就将其清零了。

    比如,在C语言之类的程序编译完成之后,已初始化的全局变量保存在.data 段中,未初始化的全局变量保存在.bss 段中。
    在《Programming ground up》里对.bss的解释为:There is another section called the .bss. This section is like the data section, except that it doesn’t take up space in the executable.
    text和data段都在可执行文件中(在嵌入式系统里一般是固化在镜像文件中),由系统从可执行文件中加载;而bss段不在可执行文件中,由系统初始化。

总体来说,程序源代码被编译以后主要分成两种段:程序指令和程序数据。代码段属于程序指令,而数据段和.bss段属于程序数据。

很多人可能会有疑问:为什么要那么麻烦,把程序的指令和数据的存放分开?混杂地放在一个段里面不是更加简单?其实数据和指令分段的好处有很多。主要有如下几个方面。

程序的指令和数据分开原因

l         一方面是当程序被装载后,数据和指令分别被映射到两个虚存区域。由于数据区域对于进程来说是可读写的,而指令区域对于进程来说是只读的,所以这两个虚存区域的权限可以被分别设置成可读写和只读。这样可以防止程序的指令被有意或无意地改写。

l         另外一方面是对于现代的CPU来说,它们有着极为强大的缓存(Cache)体系。由于缓存在现代的计算机中地位非常重要,所以程序必须尽量提高缓存的命中率。指令区和数据区的分离有利于提高程序的局部性。现代CPU的缓存一般都被设计成数据缓存和指令缓存分离,所以程序的指令和数据被分开存放对CPU的缓存命中率提高有好处。

l         第三个原因,其实也是最重要的原因,就是当系统中运行着多个该程序的副本时,它们的指令都是一样的,所以内存中只须要保存一份改程序的指令部分。对于指令这种只读的区域来说是这样,对于其他的只读数据也一样,比如很多程序里面带有的图标、图片、文本等资源也是属于可以共享的。当然每个副本进程的数据区域是不一样的,它们是进程私有的。不要小看这个共享指令的概念,它在现代的操作系统里面占据了极为重要的地位,特别是在有动态链接的系统中,可以节省大量的内存。比如我们常用的Windows Internet Explorer 7.0运行起来以后,它的总虚存空间为112 844 KB,它的私有部分数据为15 944 KB,即有96 900 KB的空间是共享部分(数据来源见图3-2)。如果系统中运行了数百个进程,可以想象共享的方法来节省大量空间。关于内存共享的更为深入的内容我们将在装载这一章探讨。

这篇关于C/C++中.bss段的解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062184

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域