代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础

代码随想录 (programmercarl.com)

动态规划(Dynamic Programming,简称DP)是一种算法设计技术,它通过将复杂问题分解为更小的子问题来解决优化问题。动态规划通常用于解决那些具有重叠子问题和最优子结构特性的问题。(可以理解为一种递推)

重叠子问题:

        在递归算法中,相同的子问题会被多次计算。动态规划通过存储这些子问题的解来避免计算。这个存储通常使用一个表格(数组)来实现,称为备忘录或DP表。

最优子结构:

        一个问题的最优解包含其子问题的最优解。这意味着可以通过组合子问题的最优解来构造原问题的最优解。

动态规划的通常步骤:

  1. 定义状态:确定DP数组的含义,即dp[i]通常代表什么意义,比如在斐波那契数列问题中,dp[i]代表第i个斐波那契数。
  2. 状态转移方法:确定状态之间如何转移,即如何从一个或多个已知状态的值计算出下一个状态的值,如斐波那契数中 F[i] = F[i-1] + F[i-2]。
  3. 初始化:确定DP数组的初始值,这些通常关乎问题的边界条件。如斐波那契数中F[0] = 0,F[1] = 1。
  4. 计算顺序:确定DP数组的计算顺序,通常需要按照逻辑顺序从小到大计算。如斐波那契数列需要一次从2开始向后计算得到想要的值。
  5. 返回结果:根据DP数组的最终值来确定原问题的解。如返回你需要的斐波那契数。

斐波那契数

509. 斐波那契数 - 力扣(LeetCode)

递推顺序为 F(n) = F(n-1)+F(n-2)

F(0) = 0, F(1) = 1

class Solution {
public:int fib(int n) {// 如果 n 小于或等于 1,直接返回 n// 这是因为斐波那契数列的前两个数是定义好的:F(0) = 0, F(1) = 1if(n<=1) return n;// 创建一个动态数组 dp,大小为 n+1,用于存储斐波那契数列vector<int>dp(n+1);// 初始化 dp 数组的前两个数,即 F(0) 和 F(1)dp[0] = 0;dp[1] = 1;// 从 2 开始循环到 n,计算 dp 数组的其余值for(int i = 2; i <= n; i++){// 根据斐波那契数列的定义,每个数是前两个数的和dp[i] = dp[i-1]+ dp[i-2];}// 返回 dp 数组的最后一个值,即斐波那契数列的第 n 个数return dp[n];}
};

算法的时间复杂度为O(n),空间复杂度同样为O(n),需要维护一个斐波那契数数组。

爬楼梯

70. 爬楼梯 - 力扣(LeetCode)

斐波那契数的一个变体,开始没想到,想到之后只能感慨代码随想录的题目顺序还是很用心的。

假设爬到第i-1层有x种方案,爬到第i-2层有y种方案,那么爬到第i层有x+y种方案(第i-1层再向上爬一层达到i,第i-2层向上爬2层到达i层)。由此,就能看出这个问题是上述斐波那契数的变体。递推关系为dp[i] = dp[i-1] + dp[i-2],从前往后遍历,dp[0] = 0,dp[1] = 1,爬到1层只有一种方案,dp[2] =2,爬到2层有2种可能 1 1 和 2。具体代码如下,我考虑从3开始计算,最后返回dp[n]。

class Solution {
public:// 定义一个名为 climbStairs 的函数,用于计算爬到第 n 阶楼梯的方法数int climbStairs(int n) {// 如果 n 小于或等于 2,直接返回 n// 这是因为当楼梯阶数不超过 2 时,方法数与楼梯阶数相同if(n<=2) return n;// 创建一个动态数组 dp,大小为 n+1,用于存储到达每一阶楼梯的方法数vector<int>dp(n+1);// 初始化 dp 数组的前三个数,即到达第 0、1、2 阶的方法数// 到达第 0 阶的方法数为 0,因为还没有开始爬,这里也可以认为是1,能减少一点代码量    // 这样dp[2]不用赋值dp[0] = 0;// 到达第 1 阶的方法数为 1,只能爬 1 阶dp[1] = 1;// 到达第 2 阶的方法数为 2,可以一次爬 2 阶或者分两次各爬 1 阶dp[2] = 2;// 从 3 开始循环到 n,计算 dp 数组的其余值for(int i = 3; i <= n; i++){// 根据问题的性质,到达第 i 阶的方法数是到达第 i-1 阶和第 i-2 阶的方法数之和// 这是因为每次你可以选择爬 1 阶或 2 阶,所以到达第 i 阶的方法可以从第 i-1 阶爬上来,或者从第 i-2 阶爬上来dp[i] = dp[i-1] + dp[i-2];}// 返回 dp 数组的最后一个值,即到达第 n 阶的方法数return dp[n];}
};

算法的时间复杂度为O(n),空间复杂度同样为O(n),需要维护一个斐波那契数数组。

使用最小花费爬楼梯

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

这里同样是上述问题的变种,但需要考虑的是,这里不是找方案,而是计算损失,所以动态规划数组dp[i]代表的是到达n前的最小花费,到达第i层需要分别计算到达第i-1层和到达第i-2层的损失,然后选择较小的值作为dp[i]的值。由于在到达最终的n层前,每次到达一个i都需要起跳,所以需要添加损失,dp[i]为min(dp[i-1]+cost[i],dp[i-2]+cost[i]),而最后抵达n时,不再需要起跳,只需要考虑dp[n-1]和dp[n-2]的较小值,就是爬楼梯所需的最小花费。

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {// 获取楼梯的阶数,即成本数组的大小int n = cost.size();// 创建一个动态数组 dp,大小为 n,用于存储到达每一阶楼梯的最小成本vector<int>dp(n);// 初始化 dp 数组的前两个数,即到达第 0、1 阶的最小成本// 到达第 0 阶的成本就是 cost[0]dp[0] = cost[0];// 到达第 1 阶的成本就是 cost[1]dp[1] = cost[1];// 从第 2 阶开始循环到第 n-1 阶,计算 dp 数组的其余值for(int i = 2; i < n; i++){// 到达第 i 阶的最小成本是到达第 i-1 阶和第 i-2 阶的最小成本加上当前阶梯的成本中的较小值// 这是因为每次你可以选择从第 i-1 阶爬上来或者从第 i-2 阶爬上来dp[i] = min(dp[i-1] + cost[i], dp[i-2] + cost[i]);}// 最后,到达楼顶的最小成本是到达倒数第一阶和倒数第二阶的最小成本中的较小值// 因为你可以从倒数第一阶直接到达楼顶,也可以从倒数第二阶直接到达楼顶return min(dp[n-2], dp[n-1]);}
};

算法的时间复杂度为O(n),遍历cost数组,并计算得到dp数组,空间复杂度同样为O(n),需要维护一个dp数组。

这篇关于代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062035

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

flask库中sessions.py的使用小结

《flask库中sessions.py的使用小结》在Flask中Session是一种用于在不同请求之间存储用户数据的机制,Session默认是基于客户端Cookie的,但数据会经过加密签名,防止篡改,... 目录1. Flask Session 的基本使用(1) 启用 Session(2) 存储和读取 Se

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语