代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础

代码随想录 (programmercarl.com)

动态规划(Dynamic Programming,简称DP)是一种算法设计技术,它通过将复杂问题分解为更小的子问题来解决优化问题。动态规划通常用于解决那些具有重叠子问题和最优子结构特性的问题。(可以理解为一种递推)

重叠子问题:

        在递归算法中,相同的子问题会被多次计算。动态规划通过存储这些子问题的解来避免计算。这个存储通常使用一个表格(数组)来实现,称为备忘录或DP表。

最优子结构:

        一个问题的最优解包含其子问题的最优解。这意味着可以通过组合子问题的最优解来构造原问题的最优解。

动态规划的通常步骤:

  1. 定义状态:确定DP数组的含义,即dp[i]通常代表什么意义,比如在斐波那契数列问题中,dp[i]代表第i个斐波那契数。
  2. 状态转移方法:确定状态之间如何转移,即如何从一个或多个已知状态的值计算出下一个状态的值,如斐波那契数中 F[i] = F[i-1] + F[i-2]。
  3. 初始化:确定DP数组的初始值,这些通常关乎问题的边界条件。如斐波那契数中F[0] = 0,F[1] = 1。
  4. 计算顺序:确定DP数组的计算顺序,通常需要按照逻辑顺序从小到大计算。如斐波那契数列需要一次从2开始向后计算得到想要的值。
  5. 返回结果:根据DP数组的最终值来确定原问题的解。如返回你需要的斐波那契数。

斐波那契数

509. 斐波那契数 - 力扣(LeetCode)

递推顺序为 F(n) = F(n-1)+F(n-2)

F(0) = 0, F(1) = 1

class Solution {
public:int fib(int n) {// 如果 n 小于或等于 1,直接返回 n// 这是因为斐波那契数列的前两个数是定义好的:F(0) = 0, F(1) = 1if(n<=1) return n;// 创建一个动态数组 dp,大小为 n+1,用于存储斐波那契数列vector<int>dp(n+1);// 初始化 dp 数组的前两个数,即 F(0) 和 F(1)dp[0] = 0;dp[1] = 1;// 从 2 开始循环到 n,计算 dp 数组的其余值for(int i = 2; i <= n; i++){// 根据斐波那契数列的定义,每个数是前两个数的和dp[i] = dp[i-1]+ dp[i-2];}// 返回 dp 数组的最后一个值,即斐波那契数列的第 n 个数return dp[n];}
};

算法的时间复杂度为O(n),空间复杂度同样为O(n),需要维护一个斐波那契数数组。

爬楼梯

70. 爬楼梯 - 力扣(LeetCode)

斐波那契数的一个变体,开始没想到,想到之后只能感慨代码随想录的题目顺序还是很用心的。

假设爬到第i-1层有x种方案,爬到第i-2层有y种方案,那么爬到第i层有x+y种方案(第i-1层再向上爬一层达到i,第i-2层向上爬2层到达i层)。由此,就能看出这个问题是上述斐波那契数的变体。递推关系为dp[i] = dp[i-1] + dp[i-2],从前往后遍历,dp[0] = 0,dp[1] = 1,爬到1层只有一种方案,dp[2] =2,爬到2层有2种可能 1 1 和 2。具体代码如下,我考虑从3开始计算,最后返回dp[n]。

class Solution {
public:// 定义一个名为 climbStairs 的函数,用于计算爬到第 n 阶楼梯的方法数int climbStairs(int n) {// 如果 n 小于或等于 2,直接返回 n// 这是因为当楼梯阶数不超过 2 时,方法数与楼梯阶数相同if(n<=2) return n;// 创建一个动态数组 dp,大小为 n+1,用于存储到达每一阶楼梯的方法数vector<int>dp(n+1);// 初始化 dp 数组的前三个数,即到达第 0、1、2 阶的方法数// 到达第 0 阶的方法数为 0,因为还没有开始爬,这里也可以认为是1,能减少一点代码量    // 这样dp[2]不用赋值dp[0] = 0;// 到达第 1 阶的方法数为 1,只能爬 1 阶dp[1] = 1;// 到达第 2 阶的方法数为 2,可以一次爬 2 阶或者分两次各爬 1 阶dp[2] = 2;// 从 3 开始循环到 n,计算 dp 数组的其余值for(int i = 3; i <= n; i++){// 根据问题的性质,到达第 i 阶的方法数是到达第 i-1 阶和第 i-2 阶的方法数之和// 这是因为每次你可以选择爬 1 阶或 2 阶,所以到达第 i 阶的方法可以从第 i-1 阶爬上来,或者从第 i-2 阶爬上来dp[i] = dp[i-1] + dp[i-2];}// 返回 dp 数组的最后一个值,即到达第 n 阶的方法数return dp[n];}
};

算法的时间复杂度为O(n),空间复杂度同样为O(n),需要维护一个斐波那契数数组。

使用最小花费爬楼梯

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

这里同样是上述问题的变种,但需要考虑的是,这里不是找方案,而是计算损失,所以动态规划数组dp[i]代表的是到达n前的最小花费,到达第i层需要分别计算到达第i-1层和到达第i-2层的损失,然后选择较小的值作为dp[i]的值。由于在到达最终的n层前,每次到达一个i都需要起跳,所以需要添加损失,dp[i]为min(dp[i-1]+cost[i],dp[i-2]+cost[i]),而最后抵达n时,不再需要起跳,只需要考虑dp[n-1]和dp[n-2]的较小值,就是爬楼梯所需的最小花费。

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {// 获取楼梯的阶数,即成本数组的大小int n = cost.size();// 创建一个动态数组 dp,大小为 n,用于存储到达每一阶楼梯的最小成本vector<int>dp(n);// 初始化 dp 数组的前两个数,即到达第 0、1 阶的最小成本// 到达第 0 阶的成本就是 cost[0]dp[0] = cost[0];// 到达第 1 阶的成本就是 cost[1]dp[1] = cost[1];// 从第 2 阶开始循环到第 n-1 阶,计算 dp 数组的其余值for(int i = 2; i < n; i++){// 到达第 i 阶的最小成本是到达第 i-1 阶和第 i-2 阶的最小成本加上当前阶梯的成本中的较小值// 这是因为每次你可以选择从第 i-1 阶爬上来或者从第 i-2 阶爬上来dp[i] = min(dp[i-1] + cost[i], dp[i-2] + cost[i]);}// 最后,到达楼顶的最小成本是到达倒数第一阶和倒数第二阶的最小成本中的较小值// 因为你可以从倒数第一阶直接到达楼顶,也可以从倒数第二阶直接到达楼顶return min(dp[n-2], dp[n-1]);}
};

算法的时间复杂度为O(n),遍历cost数组,并计算得到dp数组,空间复杂度同样为O(n),需要维护一个dp数组。

这篇关于代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062035

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)