JDK9 ConcurrentHashMap实现原理(一)

2024-06-15 00:58

本文主要是介绍JDK9 ConcurrentHashMap实现原理(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • JDK9 ConcurrentHashMap实现原理(一)
    • 数据结构
    • 私有属性
      • 静态属性
    • 相关节点
    • 构造器
    • Hash值计算
    • 添加元素
    • 初始化数组

JDK9 ConcurrentHashMap实现原理(一)

数据结构

JDK1.7中采用Segment + HashEntry的方式进行实现.使用ReentrantLock实现加锁操作。
JDK1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现.结构类似于HashMap,数组+链表+红黑树。
在这里插入图片描述

私有属性

静态属性

  • private static final int MAXIMUM_CAPACITY = 1 << 30;
    最大的容量,必须为2的平方。

  • private static final int DEFAULT_CAPACITY = 16;
    默认的初始容量,也是2的平方

  • static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    最大的数组大小。

  • private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    默认的并发等级,只在writeObject中用了。

  • private static final float LOAD_FACTOR = 0.75f;
    加载因子,只在writeObject中用了。不像HashMap中的用法。

  • static final int TREEIFY_THRESHOLD = 8;
    当某个数组位置上的节点数量超过8时,则将单链表结构转换为红黑树结构。

  • static final int UNTREEIFY_THRESHOLD = 6;
    当某个数组位置上的节点数量小于6时,则将红黑树结构转换为单链表结构。

  • static final int MIN_TREEIFY_CAPACITY = 64;
    在转换成红黑树之前,还需要检测当前table的大小是否大于等于MIN_TREEIFY_CAPACITY,小于不会转换成红黑树,而是重新扩展table的大小。

  • private static final int MIN_TRANSFER_STRIDE = 16;

  • private static final int RESIZE_STAMP_BITS = 16;

  • private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
    扩容时可利用的最大线程

  • private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

  • static final int MOVED = -1; // hash for forwarding nodes
    static final int TREEBIN = -2; // hash for roots of trees
    static final int RESERVED = -3; // hash for transient reservations
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash

  • static final int NCPU = Runtime.getRuntime().availableProcessors();
    当前机器的CPU的核心处理器数量,transfer扩容时会用到。

相关节点

  • Node:该类用于构造table[],只读节点(不提供修改方法)。是一个单链表结构。
  static class Node<K,V> implements Map.Entry<K,V> {//节点的哈希值final int hash;//建final K key;//值volatile V val;//指向下一个节点,说明是单链表结构volatile Node<K,V> next;Node(int hash, K key, V val) {this.hash = hash;this.key = key;this.val = val;}Node(int hash, K key, V val, Node<K,V> next) {this(hash, key, val);this.next = next;}public final K getKey()     { return key; }public final V getValue()   { return val; }public final int hashCode() { return key.hashCode() ^ val.hashCode(); }public final String toString() {return Helpers.mapEntryToString(key, val);}public final V setValue(V value) {throw new UnsupportedOperationException();}public final boolean equals(Object o) {Object k, v, u; Map.Entry<?,?> e;return ((o instanceof Map.Entry) &&(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&(v = e.getValue()) != null &&(k == key || k.equals(key)) &&(v == (u = val) || v.equals(u)));}/*** Virtualized support for map.get(); overridden in subclasses.*/Node<K,V> find(int h, Object k) {Node<K,V> e = this;if (k != null) {do {K ek;if (e.hash == h &&((ek = e.key) == k || (ek != null && k.equals(ek))))return e;} while ((e = e.next) != null);}return null;}}
  • TreeBin:红黑树结构。
  • TreeNode:红黑树节点。
static final class TreeNode<K,V> extends Node<K,V> {//父节点TreeNode<K,V> parent;  // red-black tree links//左节点TreeNode<K,V> left;//右节点TreeNode<K,V> right;//TreeNode<K,V> prev;    // needed to unlink next upon deletion//节点的颜色boolean red;TreeNode(int hash, K key, V val, Node<K,V> next,TreeNode<K,V> parent) {super(hash, key, val, next);this.parent = parent;}Node<K,V> find(int h, Object k) {return findTreeNode(h, k, null);}//使用this这个树形节点作为根节点,寻找目标节点。final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {}}
  • ForwardingNode:临时节点(扩容时使用)。

构造器

  • 无参构造器
 public ConcurrentHashMap() {}

指定初始容量

 public ConcurrentHashMap(int initialCapacity) {if (initialCapacity < 0)throw new IllegalArgumentException();int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?MAXIMUM_CAPACITY :tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));this.sizeCtl = cap;
}

这里使用tableSizeFor将输入的容量转换为2的平方。

private static final int tableSizeFor(int c) {int n = c - 1;n |= n >>> 1;n |= n >>> 2;n |= n >>> 4;n |= n >>> 8;n |= n >>> 16;return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;}

输入容量:3 , 输出:4;
输入容量:11 , 输出:16;
输入容量:17 , 输出:32;
不确定这里为什么要这么处理(initialCapacity + (initialCapacity >>> 1) + 1));虽然直接initialCapacity的结果也是一样的。

  • 还可以指定加载因子和concurrencyLevel。
    可以看到这两个参数在新版本中只是在初始化才会用到,其他地方不会用到,注意这里和HashMap的区别。
 public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (initialCapacity < concurrencyLevel)   // Use at least as many binsinitialCapacity = concurrencyLevel;   // as estimated threadslong size = (long)(1.0 + (long)initialCapacity / loadFactor);int cap = (size >= (long)MAXIMUM_CAPACITY) ?MAXIMUM_CAPACITY : tableSizeFor((int)size);this.sizeCtl = cap;
}
  • 和大多数集合一样,都可以由其他集合元素作为初始元素。
 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {this.sizeCtl = DEFAULT_CAPACITY;putAll(m);}

Hash值计算

可以看出 计算出的hash都是正值

static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
static final int spread(int h) {return (h ^ (h >>> 16)) & HASH_BITS;
}

添加元素

1.key值和value都不能null
2.onlyIfAbsent=true : 如果当前key值已经存在,则不 更新为新值, false: 不管什么情况都会更新为新值。

 final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();//获取hash值int hash = spread(key.hashCode());int binCount = 0;for (Node<K,V>[] tab = table;;) {Node<K,V> f; int n, i, fh; K fk; V fv;//如果table为空,说明之前没有放入元素if (tab == null || (n = tab.length) == 0)tab = initTable();//如果要插入的位置没有节点数据     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//如果数组的桶是空的,则尝试插入数据,直到成功才中断当前循环,使用CAS算法if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))break;                   // no lock when adding to empty bin}//到此插入数据成功//如果在插入的时候,节点是一个forwordingNode状态,表示正在扩容,那么当前线程进行帮助扩容            else if ((fh = f.hash) == MOVED)tab = helpTransfer(tab, f);else if (//如果onlyIfAbsent为true,也就是只要key已经存在,就不写入新值onlyIfAbsent //扩容已经结束,fh 和传入key的值一样&&   fh == hash   // check first node//&& ((fk = f.key) == key || fk != null && key.equals(fk)) && (fv = f.val) != null)return fv;else {V oldVal = null;synchronized (f) {if (tabAt(tab, i) == f) {if (fh >= 0) {binCount = 1;for (Node<K,V> e = f;; ++binCount) {K ek;if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key, value);break;}}}else if (f instanceof TreeBin) {Node<K,V> p;binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}else if (f instanceof ReservationNode)throw new IllegalStateException("Recursive update");}}if (binCount != 0) {if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}}}addCount(1L, binCount);return null;
}

初始化数组

private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;while ((tab = table) == null || tab.length == 0) {if ((sc = sizeCtl) < 0)Thread.yield(); // lost initialization race; just spinelse if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {try {if ((tab = table) == null || tab.length == 0) {int n = (sc > 0) ? sc : DEFAULT_CAPACITY;@SuppressWarnings("unchecked")Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];table = tab = nt;sc = n - (n >>> 2);}} finally {sizeCtl = sc;}break;}}return tab;
}

未完待续。。。。。。。。。。

这篇关于JDK9 ConcurrentHashMap实现原理(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061985

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依