孤立森林【python,机器学习,算法】

2024-06-14 23:44

本文主要是介绍孤立森林【python,机器学习,算法】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作用与特征

孤立森林主要用于样本的异常点检测,异常点检测又被称为离群点检测(outlier detection),那么什么样的数据才能算作异常数据呢,一般情况异常点具有以下两个特性:

  • 异常数据跟样本中大多数数据不太一样。
  • 异常数据在整体数据样本中占比比较小。

直观理解

先简单解释一下什么是孤立森林: 「假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。

之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。

直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间里了」。

哪些很容易被切分出去的点就会被定义为异常点。

孤立森林构建流程

  1. 构建森林
    那么和随机森林一样,孤立森林由 iTree(isolation tree)组成,iTree树和随机森林的决策树不太一样,构建过程只是一个完全随机的过程。构建步骤如下:
    • 随机选择一个特征tree_feature作为建树的节点。
    • 如果样本只剩一个或者树的路径深度已经超过最大深度,那么可以将当前节点作为叶子节点直接返回。
      • 叶子节点返回值为【0,1】,其中 0 表示叶子节点,1 表示叶子节点的路径长度为 1。
    • 从所选样本中,找出tree_feature
      的最大值和最小值,然后在最大值和最小值之间随机选择一个值作为分割点split_val
    • 构建树的左右节点。
      • 样本中小于split_val的划分到左边节点。
      • 样本中大于等于split_val的划分到右边节点。
    • 返回当前节点信息:【1,left_child,right_child,tree_feature,split_val】。
  2. 使用森林进行评估。
    使用训练好的孤立森林进行数据评估,检测异常数据。具体步骤如下:
    • 遍历每一个样本数据。
    • 计算样本数据的异常分数。计算公式如下:
      • 样本的异常分数 s ( i ) = 2 − E ( h ( i ) ) c ( n ) s(i)=2^{-\frac{E(h(i))}{c(n)}} s(i)=2c(n)E(h(i))
      • 其中 E ( h ( i ) ) E(h(i)) E(h(i))表示样本i的期望路径长度,计算方法如下:
        1. 将样本i带入每课树中,计算其路径长度。
        2. 将计算得到的所有长度相加再除以树的棵树,就得到了样本的期望。
      • 其中二叉搜索树的平均路径长度 c ( n ) = 2 H ( n − 1 ) − 2 ( n − 1 ) n c(n)=2H(n-1)-\frac{2(n-1)}{n} c(n)=2H(n1)n2(n1),用来对结果进行归一化处理。这里的n表示树的数量。
      • 而调和数 H ( n − 1 ) = ln ⁡ n − 1 − ζ H(n-1)=\ln{n-1}-\zeta H(n1)=lnn1ζ,欧拉常数 ζ ≈ 0.5772156649 \zeta \approx 0.5772156649 ζ0.5772156649
    • 根据异常分数判断样本是否为异常点。异常分数的取值范围为0-1,分数越接近 1,表示该点越有可能是异常孤立的点。

代码实现

import numpy as np
import torch
from matplotlib import pyplot as pltdef iTree(X: torch.Tensor, current_path_len, max_tree_height):"""孤立森林中的树:param X: 数据集:param current_path_len: 当前路径长:param max_tree_height: 树高最大值:return: 决策树信息"""# 当前路径长度大于等于树的最大高度或者样本数量小于等于 1,返回叶子节点信息:0 表示叶子节点,以及样本的数量if current_path_len >= max_tree_height or len(X) <= 1:return [0, len(X)]# 随机选取一个样本特征random_select_feature = np.random.randint(0, len(X[0]))# 找到特征下的最大值和最小值feature_max_val = X[:, random_select_feature].max()feature_min_val = X[:, random_select_feature].min()# 在最大值和最小值之间随机选一个值作为分割点separate_val = (np.random.rand() * (feature_max_val - feature_min_val)+ feature_min_val)lchild = iTree(X[X[:, random_select_feature] < separate_val, :],current_path_len + 1, max_tree_height)rchild = iTree(X[X[:, random_select_feature] >= separate_val, :],current_path_len + 1, max_tree_height)# 返回当前节点信息return [1, lchild, rchild, random_select_feature, separate_val]def c(n):"""计算二叉搜索树的平均路径长度,用来对结果进行归一化处理公式:c(n)= 2H( n − 1 ) − 2 ( n − 1 )/nH(i) 表示调和数,近似值为:ln(i)+ ζ,其中 ζ 表示欧拉常数,约等于 0.5772156649,n 表示样本的数量。平均路径长度的期望是一个常数,该公式提供了一个标准化的基准,用于将路径长度标准化。:param n: 表示单棵树中的样本数量:return: 平均路径长度"""return 0 if n == 1 else 2 * (np.log(n - 1) + 0.5772156649) - (2 * (n - 1) / n)def PathLength(x, iTree, current_path_len):"""计算样本在树中的路径长度:param x: 样本:param iTree: 孤立树:param current_path_len: 当前长度:return: 叶子节点的路径长度。"""# 到达叶子节点或者达到最大路长度时,结束计算。if iTree[0] == 0:return current_path_len + c(iTree[1])# 样本中的特征值小于分叉点的值时,搜索左子树if x[iTree[3]] < iTree[4]:return PathLength(x, iTree[1], current_path_len + 1)# 搜索右子树return PathLength(x, iTree[2], current_path_len + 1)def myIForest(X, n_trees, tree_size):"""孤立森林,即构建多颗树:param X:样本集:param n_trees: 树的数量:param tree_size: 每棵树有多少个样本,即采样大小:return: 树的集合"""Ts = []# 树高的最大值max_tree_height = np.ceil(np.log(tree_size))for i in range(n_trees):x_i = np.random.choice(range(len(X)), [tree_size], replace=False)Ts.append(iTree(X[x_i], 0, max_tree_height))return Tsdef anomalyScore(x, Ts, tree_size):"""计算样本的样本的异常分数,异常分数的取值为 0-1,值越大越可能是异常点:param x: 样本:param Ts: 树的集合:param tree_size: 树中包含的样本数量:return: 异常分数值"""# 样本在所有树中的路径长度期望E_x_len = 0for T in Ts:E_x_len += PathLength(x, T, 0)E_x_len /= len(Ts)s = 2 ** (-E_x_len / c(tree_size))return s# %% 定义正常分布、超参数、绘图矩阵
torch.manual_seed(0)
np.random.seed(0)
points = torch.randn([512, 2])
# 将 80 个样本形成一个簇
points[-80:] = torch.randn([80, 2]) / 3 + 4
# 定义树的数量和树的大小
n_tree, tree_size = 100, 256x, y = np.arange(-4.5, 5.5, 0.1), np.arange(-4.5, 5.5, 0.1)
# 网格化
X, Y = np.meshgrid(x, y)XY = np.stack([X, Y], -1)
# 生成和 X 一样大小的 0 矩阵 Z
Z = np.zeros_like(X)
# %% 自定义孤立森林、异常值可视化、决策边界
# 训练树
myTs = myIForest(points, n_tree, tree_size)
# 评分
for i in range(XY.shape[0]):for j in range(XY.shape[1]):Z[i, j] = anomalyScore(XY[i, j], myTs, tree_size)
plt.plot(points[:, 0], points[:, 1], '.', c="purple", alpha=0.3)
# 绘制登高线
plt.contourf(X, Y, Z)
cont = plt.contour(X, Y, Z, levels=[0.55])
plt.clabel(cont, inline=True, fontsize=10)
plt.show()
# %% pyOD孤立森林、异常值可视化、决策边界
from pyod.models.iforest import IForestifor = IForest(n_tree, tree_size, 0.1, random_state=0)
ifor.fit(points)
h, w = XY.shape[0], XY.shape[1]
XY = XY.reshape(-1, 2)
Z = Z.reshape(-1)
Z = ifor.decision_function(XY)
Z = Z.reshape(h, w)
XY = XY.reshape(h, w, 2)plt.plot(points[:, 0], points[:, 1], '.', c="purple", alpha=0.3)
plt.contourf(X, Y, Z)
cont = plt.contour(X, Y, Z, levels=[0])  # 决策边界为0
plt.clabel(cont, inline=True, fontsize=10)
plt.show()

这个示例实现了孤立森林算法,并将实现的算法与第三方库实现的算法进行可视化的比较展示,从结果可以看出,该手撕代码实现与生产结果差异并不大。

这篇关于孤立森林【python,机器学习,算法】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061837

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.