使用星鸾云GPU云服务器搭配Jupyter Lab,创建个人AI大模型

2024-06-14 23:36

本文主要是介绍使用星鸾云GPU云服务器搭配Jupyter Lab,创建个人AI大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们公司IT部门宣布了一个大事情,他们开发了一款内部用的大模型,叫作一号AI员工(其实就是一个聊天机器人),这个一号员工可以回答所有关于公司财务、人事、制度、产品方面的问题。

我问了句:公司加班有加班费嘛。

它回答:主人,我是24小时待命,不需要加班费的噢。

好一个答非所问。

虽然我知道这应该是套用开源模型,用公司数据来训练,比较粗糙,但还是为IT同事们与时俱进的精神鼓掌。

现在各种AI大模型层出不穷,不光是互联网大厂在搞,各种传统公司也在赶时髦,比如像我们。其实大模型开发会涉及到三个难题,算法、算力、数据,不是一般企业能扛得住的。

这其中以算力的成本最高,算法可以用开源的,数据可以用自己公司的,只有算力是需要花钱买大量的GPU、CPU来跑算法和数据,像现在英伟达的H100、H200 GPU已经卖到天价,就这样你还买不到。

但其实作为个人,你也可以创建自己的AI大模型,这次给大家介绍强烈推荐两个神器,星鸾云GPU云服务器和Jupyter Lab,两者结合既可以用于数据科学、数据可视化,也可以搞定机器学习、深度学习,搭建属于你的AI大模型。

星鸾云GPU云服务器,顾名思义,是一个搭建在云服务器上的GPU算力平台,具备超强的大规模、高并发计算能力,你不需要自己搭GPU服务器,也能用到稳定、高效且高性价比的算力。

https://xl.hzxingzai.cn/register?invitation_code=0006407067


Jupyter Lab是一款基于Python的web交互式开发环境,你可以在Lab上创建多个notebook,可以理解成是Jupyter notebook的加强升级版。

Jupyter Lab集编程开发、文本编辑器、可视化平台、终端以及各种个性化组件于一体,支持写代码、跑算法、展示可视化等等,几乎无所不包。

一般我们会把Jupyter Lab安装在本地,它运行在各种计算资源上,包括CPU、GPU、TPU等等,但由于本地电脑计算资源有限,只能跑跑一些简单的数据分析、机器学习任务,所以这时候就需要星鸾云GPU云服务器来提供GPU算力。

你能在星鸾云平台上创建使用 JupyterLab,享受业界超强算力的GPU计算卡,这样既能轻松进行代码调试、快速迭代和优化算法,还能极快的跑各种任务,非常的丝滑。


以下是在星鸾云中创建使用Jupyter Lab的步骤:

1. 创建星鸾云实例

首先,在星鸾云平台上创建一个GPU云服务器实例。选择合适的GPU型号和配置,并启动实例。


2. 连接到实例

使用SSH远程连接到星鸾云实例。Windows 用户可以使用 PowerShell 或者 XShell,Mac 用户可以直接使用 Terminal。

4. 启动登录 JupyterLab

直接在星鸾云实例中打开Jupyter Lab,接着打开终端,登录实例

5. 使用 JupyterLab

接着在 JupyterLab 中创建新的notebook,编写和运行Python代码,开始享受GPU跑算法带来的快乐吧。

我们使用PyTorch在MNIST数据集上训练一个简单的神经网络,来演示下如何使用星鸾云平台+Jupyter Lab来创建AI模型。

MNIST数据集是一个手写数字识别的经典数据集,我们创建神经网络模型用来识别手写数字。

下面是在Notebook中编写的代码:

导入相关库
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
加载和预处理数据
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
定义神经网络结构
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(784, 500)self.fc2 = nn.Linear(500, 10)def forward(self, x):x = x.view(-1, 784)x = torch.relu(self.fc1(x))x = self.fc2(x)return xnet = Net()
定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
训练神经网络
for epoch in range(10):  # loop over the dataset multiple timesrunning_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = dataoptimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader)}')
保存模型
PATH = './mnist_net.pth'
torch.save(net.state_dict(), PATH)

就这样,我们使用星鸾云GPU训练了一个神经网络模型,用于识别手写数据,虽然很简单,但也是一个地地道道的AI模型了。

接下来我们再尝试使用星鸾云GPU+Jupyter Lab开发一个AI大模型聊天工具,用于回答公司的业务问题。

首先配置环境,登录星鸾云实例,并安装必要的软件和库。

用于训练聊天机器人的问答数据主要包括:

公司FAQs
业务相关文档
公司制度文件
等等

然后对数据进行预处理,在JupyterLab中创建一个新的Notebook,编写代码对数据进行清洗、分词和格式化,准备输入模型训练。

接着,选择一个适合对话系统的预训练模型库,建议使用transformers库,然后在GPU加速下进行模型训练,监控训练过程并调整超参数以获得最佳性能。

以下是在JupyterLab的演示代码:

# 导入所需的库
from transformers import Trainer, TrainingArguments# 定义训练参数
training_args = TrainingArguments(output_dir="./results",evaluation_strategy="epoch",learning_rate=2e-5,per_device_train_batch_size=16,per_device_eval_batch_size=16,num_train_epochs=3,weight_decay=0.01,
)# 定义Trainer对象
trainer = Trainer(model=model,args=training_args,train_dataset=train_dataset,  # 训练数据集eval_dataset=eval_dataset,    # 验证数据集tokenizer=tokenizer,
)# 训练模型
trainer.train()# 保存模型
model.save_pretrained("./ai-chat-model")
tokenizer.save_pretrained("./ai-chat-model")

模型训练好后,你可以部署为API服务,然后集成到公司的内部业务支持平台,比如内网、企微、钉钉等。

使用星鸾云GPU云服务器和JupyterLab可以很轻松的进行大模型的训练和调试,简直是黄金搭档组合。

星鸾云GPU云服务器能很好的帮助个人和企业进行大数据和AI的模型训练,不需要自己采购配置GPU服务器。

它有几个特点,我觉得在同类产品里算是领头羊的存在。

  • 超强算力:配备业界领先的GPU计算卡,提供超强的并行计算能力。
  • 专业稳定:智能液冷数据中心保障了99.99%的机器稳定性。
  • 高性价比:支持按需和包周期计费,避免资源浪费。
  • 快速交付:云主机从订购到使用仅需数分钟,提供丰富的AI工具链,实现一键部署。

大家也尝试利用星鸾云GPU云服务器自己开发个AI大模型机器人,赶赶时髦,哈哈。

https://xl.hzxingzai.cn/register?invitation_code=0006407067

这篇关于使用星鸾云GPU云服务器搭配Jupyter Lab,创建个人AI大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061812

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时