类别朴素贝叶斯CategoricalNB和西瓜数据集

2024-06-14 20:04

本文主要是介绍类别朴素贝叶斯CategoricalNB和西瓜数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CategoricalNB

  • 1 CategoricalNB原理以及用法
  • 2 数据集
    • 2.1 西瓜数据集
    • 2.2 LabelEncoder
    • 2.3 OrdinalEncoder
  • 3 代码实现

1 CategoricalNB原理以及用法

(1)具体原理
具体原理可看:贝叶斯分类器原理
sklearn之CategoricalNB对条件概率的原理如下:
P ( x i = k ∣ y ) = N y , k + α N y + α n i P(x_i = k | y) = \frac{N_{y,k} + \alpha}{N_y + \alpha n_i} P(xi=ky)=Ny+αniNy,k+α
其中:

  • N y , k N_{y,k} Ny,k是在类别y下特征 x i x_i xi取值为k的样本数。
  • N y N_y Ny 是类别y下的总样本数。
  • α \alpha α是平滑参数,用来避免零概率,如果我们将 α \alpha α设置为1,则这个平滑叫做拉普拉斯平滑,如果 α \alpha α小于1,则我们把它叫做利德斯通平滑。
  • n i n_i ni是特征 x i x_i xi的可能取值的数量。

(2)CategoricalNB用法
之后会有详细例子,现在先看用法

class sklearn.naive_bayes.CategoricalNB(*, alpha=1.0, fit_prior=True, class_prior=None)

参数说明:

参数
说明
alphafloat, default=1.0
附加的平滑参数(Laplace/Lidstone),0是不平滑
fit_priorbool, default=True
是否学习类别先验概率。若为False,将使用统一的先验(概率相等)
class_priorarray-like of shape (n_classes,), default=None
类别的先验概率。一经指定先验概率不能随着数据而调整。

属性说明:

属性
说明
category_count_list of arrays of shape (n_features,)
为每个要素保存形状的数组(n_classes,各个要素的n_categories)。每个数组为每个类别和分类的特定特征提供遇到的样本数量。
class_count_ndarray of shape (n_classes,)
拟合期间每个类别遇到的样本数。此值由提供的样本权重加权。
class_log_prior_ndarray of shape (n_classes,)
每个类别的对数先验概率(平滑)。
classes_ndarray of shape (n_classes,)
分类器已知的类别标签
feature_log_prob_list of arrays of shape (n_features,)
为每个特征保形状的数组(n_classes,各个要素的n_categories)。每个数组提供了给定各自特征和类别的分类的经验对数概率log(p(xi|y))
n_features_int
每个样本的特征数量。

方法说明:

方法
说明
fit(X, y[, sample_weight])根据X,y拟合朴素贝叶斯分类器。
get_params([deep])获取这个估计器的参数
partial_fit(X, y[, classes, sample_weight])对一批样本进行增量拟合。
predict(X)对测试向量X进行分类
predict_log_proba(X)返回针对测试向量X的对数概率估计
predict_proba(X)返回针对测试向量X的概率估计
score(X, y[, sample_weight])返回给定测试数据和标签上的平均准确率
set_params(**params)为这个估计器设置参数

对于X矩阵和y矩阵的要求如下:

参数
说明
X{array-like, sparse matrix} of shape (n_samples, n_features)
样本的特征矩阵,其中n_samples是样本数量,n_features是特征数量。在此,假设X的每个特征都来自不同的分类分布。进一步假设每个特征的所有类别均由数字0,…,n-1表示,其中n表示给定特征的类别总数。例如,这可以在顺序编码(OrdinalEncoder)的帮助下实现。
yarray-like of shape (n_samples,)
每个样本所属的标签类别

2 数据集

2.1 西瓜数据集

要对下述的数据集转换成特征矩阵X和标签类别y,则需要认识两种编码

色泽根蒂敲击纹理脐部触感好坏
青绿蜷缩浊响清晰凹陷硬滑好瓜
乌黑蜷缩沉闷清晰凹陷硬滑好瓜
乌黑蜷缩浊响清晰凹陷硬滑好瓜
青绿蜷缩沉闷清晰凹陷硬滑好瓜
浅白蜷缩浊响清晰凹陷硬滑好瓜
青绿稍蜷浊响清晰稍凹软粘好瓜
乌黑稍蜷浊响稍糊稍凹软粘好瓜
乌黑稍蜷浊响清晰稍凹硬滑好瓜
乌黑稍蜷沉闷稍糊稍凹硬滑坏瓜
青绿硬挺清脆清晰平坦软粘坏瓜
浅白硬挺清脆模糊平坦硬滑坏瓜
浅白蜷缩浊响模糊平坦软粘坏瓜
青绿稍蜷浊响稍糊凹陷硬滑坏瓜
浅白稍蜷沉闷稍糊凹陷硬滑坏瓜
乌黑稍蜷浊响清晰稍凹软粘坏瓜
浅白蜷缩浊响模糊平坦硬滑坏瓜
青绿蜷缩沉闷稍糊稍凹硬滑坏瓜

2.2 LabelEncoder

class sklearn.preprocessing.LabelEncoder
  • 对目标标签进行编码,其值介于0和n_classes-1之间。
  • 该转换器应用于编码目标值,即y,而不是输入X。

常用方法:

方法
说明
fit(self, y)适合标签编码器
fit_transform(self, y)适合标签编码器并返回编码的标签
get_params(self[, deep])获取此估计量的参数
inverse_transform(self, y)将标签转换回原始编码
set_params(self, **params)设置此估算器的参数
transform(self, y)将标签转换为标准化的编码

对于y矩阵的要求如下:

参数
说明
yarray-like of shape (n_samples,)
每个样本所属的标签类别

2.3 OrdinalEncoder

class sklearn.preprocessing.OrdinalEncoder(*, categories='auto', dtype=<class 'numpy.float64'>)
  • 将分类特征编码为整数数组。
  • 该转换器的输入应为整数或字符串之类的数组,表示分类(离散)特征所采用的值。要素将转换为序数整数。这将导致每个要素的一列整数(0到n_categories-1)。

参数说明如下:

参数
说明
categories‘auto’ or a list of array-like, default=’auto’
适合标签编码器每个功能的类别(唯一值):
‘auto’:根据训练数据自动确定类别。
list:category [i]保存第i列中预期的类别。传递的类别不应将字符串和数字值混合使用,并且在使用数字值时应进行排序
使用的类别可以在category_属性中找到。
dtypenumber type, default np.float64
所需的输出dtype

常用方法有:

方法
说明
fit(X[, y])使OrdinalEncoder拟合X
get_params([deep])获取此估计量的参数
inverse_transform(X)将数据转换回原始表示形式
set_params(**params)设置此估算器的参数
transform(X)将X转换为序数代码

对X矩阵的要求如下:

参数
说明
Xarray-like, shape [n_samples, n_features]

3 代码实现

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
from sklearn.naive_bayes import CategoricalNB# 第一步:创建数据集
data = {'色泽': ['青绿', '乌黑', '乌黑', '青绿', '浅白', '青绿', '乌黑', '乌黑', '乌黑', '青绿', '浅白', '浅白', '青绿', '浅白', '乌黑', '浅白', '青绿'],'根蒂': ['蜷缩', '蜷缩', '蜷缩', '蜷缩', '蜷缩', '稍蜷', '稍蜷', '稍蜷', '稍蜷', '硬挺', '硬挺', '蜷缩', '稍蜷', '稍蜷', '稍蜷', '蜷缩', '蜷缩'],'敲击': ['浊响', '沉闷', '浊响', '沉闷', '浊响', '浊响', '浊响', '浊响', '沉闷', '清脆', '清脆', '浊响', '浊响', '沉闷', '浊响', '浊响', '沉闷'],'纹理': ['清晰', '清晰', '清晰', '清晰', '清晰', '清晰', '稍糊', '清晰', '稍糊', '清晰', '模糊', '模糊', '稍糊', '稍糊', '清晰', '模糊', '稍糊'],'脐部': ['凹陷', '凹陷', '凹陷', '凹陷', '凹陷', '稍凹', '稍凹', '稍凹', '稍凹', '平坦', '平坦', '平坦', '凹陷', '凹陷', '稍凹', '平坦', '稍凹'],'触感': ['硬滑', '硬滑', '硬滑', '硬滑', '硬滑', '软粘', '软粘', '硬滑', '硬滑', '软粘', '硬滑', '软粘', '硬滑', '硬滑', '软粘', '硬滑', '硬滑'],'好坏': ['好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜']
}df = pd.DataFrame(data)# 第二步:编码# 标签编码
label_encoder = LabelEncoder()
df['好坏'] = label_encoder.fit_transform(df['好坏'])# 对分类特征进行Ordinal编码
ordinal_encoder = OrdinalEncoder()
categorical_features = df.columns[:-1]  # 除最后一列“好坏”之外的所有列
df[categorical_features] = ordinal_encoder.fit_transform(df[categorical_features])# 确定特征X和标签y
X = df.drop('好坏', axis=1)
y = df['好坏']# 第三步:划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 第四步:训练模型
model = CategoricalNB()
model.fit(X_train, y_train)# 输出预测概率
probabilities = model.predict_proba(X_test)
print("Probabilities:\n", probabilities)
print('精确度:', model.score(X_test, y_test))

首先看一下X矩阵和y矩阵,如图所示:
X矩阵
X矩阵
y矩阵
y矩阵
代码准确率结果如下:
准确率

这篇关于类别朴素贝叶斯CategoricalNB和西瓜数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061381

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语