从大量文本中挖掘‘典型意见‘-基于DBSCAN的文本聚类实战

2024-06-14 17:20

本文主要是介绍从大量文本中挖掘‘典型意见‘-基于DBSCAN的文本聚类实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文本聚类,是一个无监督学习里面非常重要的课题,无论是在风控还是在其他业务中,通过对大规模文本数据的分析,找出里面的聚集观点,有助于发现新的问题或者重点问题。

通过对评论文本的分析,我们可以发现消费者关注的产品或服务痛点

通过对店铺商品标题的文本聚类,可以知道店铺主要集中卖什么类型的商品

通过对来电语音转文本聚类,可以知道公司售后业务的典型问题或者新问题的爆发

... ...

通过对新闻文本的聚类,可以知道大家最近都在讨论什么主题

通过对昵称聚类,可以发现批量注册用户团伙

文本聚类方法非常多,我们今天讨论DBSCAN,也是一个非常经典的算法,我们上期讲过的算法,本文本进行简短的回顾,并用一个评价数据的聚类,来进行实战应用,下面就是发现的一个簇的文本。

好像不卫生吃了拉肚子,口感不好。

味道不行 吃了拉肚子 

别买 不卫生吃了拉肚子

菜品不新鲜,吃了拉肚子

鸭脚变味了,吃了拉肚子

吃了拉肚子  有点不新鲜了

就是不知道怎么回事我吃了拉肚子

一、算法概述

DBSCAN是一个出现得比较早(1996年),比较有代表性的基于密度聚类算法,DBSCAN是英文Density-Based Spatial Clustering of Applications with Noise 的缩写,意思为:一种基于密度,同时对于有噪声(即孤立点或异常值)的数据集也有很好的鲁棒的空间聚类算法。DBSCAN将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。

在聚类问题中,如果数据集的各类呈球形分布,可以采用kmeans聚类算法,如果各类数据呈非球形分布(如太极图、笑脸图等),采用kmeans算法效果将大打折扣,这种情况使用DBSCAN聚类算法更为合适,如下图所示,我们的文本聚类,恰好是一些不标准的分布,且事先不确定类别数量,因此用这个算法也是很合适的。

图片

二、 基本概念

DBSCAN的基本概念可以用1个思想,2个参数,3种类别,4种关系来总结。

1、1个核心思想

该算法最核心的思想就是基于密度,直观效果上看,DBSCAN算法可以找到样本点的全部密集区域,并把这些密集区域当做一个一个的聚类簇。

可以简单的理解该算法是基于密度的一种生长,和病毒的传染差不多,只要密度够大,就能传染过去,遇到密度小的,就停止传染,如下图所示。

图片

可视化的网站:https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

2、2个算法参数,邻域半径R、最少点数目MinPoints

这两个算法参数实际可以刻画什么叫密集:当邻域半径R内的点的个数大于最少点数目R时,就是密集。

图片

这两个参数恰好对应sklearn.cluster.DBSCAN算法中的两个参数为:min_samples 和 eps:eps表示数据点的邻域半径,如果某个数据点的邻域内至少有min_sample个数据点,则将该数据点看作为核心点,如果某个核心点的邻域内有其他核心点,则将它们看作属于同一个簇。如果将eps设置得非常小,则有可能没有点成为核心点,并且可能导致所有点都被标记为噪声。如果将eps设置为非常大,则将导致所有点都被划分到同一个簇。如果min_samples设置地太大,那么意味着更少的点会成为核心点,而更多的点将被标记为噪声。如下所示,指定半径r的点内有满足条件的个点,则可以认为该区域密集

3、3种点的类别,核心点、

这篇关于从大量文本中挖掘‘典型意见‘-基于DBSCAN的文本聚类实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061038

相关文章

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析