DETR实现目标检测(一)-训练自己的数据集

2024-06-14 16:28

本文主要是介绍DETR实现目标检测(一)-训练自己的数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、DETR架构

DETR(Detection Transformer)是一种新型的目标检测模型,由Facebook AI Research (FAIR) 在2020年提出。DETR的核心思想是将目标检测任务视为一个直接的集合预测问题,而不是传统的两步或多步预测问题。这种方法的创新之处在于它直接预测目标的类别和边界框,而不是先生成大量的候选区域,然后再对这些区域进行分类和边界框回归。

DERT的特点主要有二:

一是Transformer结构在CV网络中的应用;

二是提出了一种新的或者说不同的损失函数(Loss Function)。

2、模型下载

模型代码下载地址:

GitHub - facebookresearch/detr: End-to-End Object Detection with Transformers

预训练模型(即权重文件)下载地址:

GitHub - facebookresearch/detr: End-to-End Object Detection with Transformers

下载后放到项目下待使用:

3、labelme标注文件转为coco模式

首先,labelme标注的文件存放在指定位置,包含json和jpg文件

然后,利用代码将labelme的标注文件转化为coco。包含annotations(两个json文件)、train2017(训练集图片)、val2017(验证集图片)

备注:必须严格按照笔者图中的文件命名方式进行命名,训练集清一色命名为instances_train2017.json,验证集清一色命名为instances_val2017.json,这是模型本身的命名要求,用户需要严格遵守。

实现代码如下:

import json
from labelme import utils
import numpy as np
import glob
import PIL.Imageclass MyEncoder(json.JSONEncoder):def default(self, obj):if isinstance(obj, np.integer):return int(obj)elif isinstance(obj, np.floating):return float(obj)elif isinstance(obj, np.ndarray):return obj.tolist()else:return super(MyEncoder, self).default(obj)class labelme2coco(object):def __init__(self, labelme_json=[], save_json_path='./tran.json'):self.labelme_json = labelme_jsonself.save_json_path = save_json_pathself.images = []self.categories = []self.annotations = []# self.data_coco = {}self.label = []self.annID = 1self.height = 0self.width = 0self.save_json()def data_transfer(self):for num, json_file in enumerate(self.labelme_json):with open(json_file, 'r') as fp:data = json.load(fp)  # 加载json文件self.images.append(self.image(data, num))for shapes in data['shapes']:label = shapes['label']if label not in self.label:self.categories.append(self.categorie(label))self.label.append(label)points = shapes['points']  # 这里的point是用rectangle标注得到的,只有两个点,需要转成四个点points.append([points[0][0], points[1][1]])points.append([points[1][0], points[0][1]])self.annotations.append(self.annotation(points, label, num))self.annID += 1def image(self, data, num):image = {}img = utils.img_b64_to_arr(data['imageData'])  # 解析原图片数据height, width = img.shape[:2]image['height'] = heightimage['width'] = widthimage['id'] = num + 1image['file_name'] = data['imagePath'].split('/')[-1]self.height = heightself.width = widthreturn imagedef categorie(self, label):categorie = {}categorie['supercategory'] = 'Cancer'categorie['id'] = len(self.label) + 1  # 0 默认为背景categorie['name'] = labelreturn categoriedef annotation(self, points, label, num):annotation = {}annotation['segmentation'] = [list(np.asarray(points).flatten())]annotation['iscrowd'] = 0annotation['image_id'] = num + 1annotation['bbox'] = list(map(float, self.getbbox(points)))annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]annotation['category_id'] = self.getcatid(label)  # 注意,源代码默认为1annotation['id'] = self.annIDreturn annotationdef getcatid(self, label):for categorie in self.categories:if label == categorie['name']:return categorie['id']return 1def getbbox(self, points):polygons = pointsmask = self.polygons_to_mask([self.height, self.width], polygons)return self.mask2box(mask)def mask2box(self, mask):"""从mask反算出其边框mask:[h,w]  0、1组成的图片1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)"""# np.where(mask==1)index = np.argwhere(mask == 1)rows = index[:, 0]clos = index[:, 1]# 解析左上角行列号left_top_r = np.min(rows)  # yleft_top_c = np.min(clos)  # x# 解析右下角行列号right_bottom_r = np.max(rows)right_bottom_c = np.max(clos)return [left_top_c, left_top_r, right_bottom_c - left_top_c,right_bottom_r - left_top_r]  # [x1,y1,w,h] 对应COCO的bbox格式def polygons_to_mask(self, img_shape, polygons):mask = np.zeros(img_shape, dtype=np.uint8)mask = PIL.Image.fromarray(mask)xy = list(map(tuple, polygons))PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)mask = np.array(mask, dtype=bool)return maskdef data2coco(self):data_coco = {}data_coco['images'] = self.imagesdata_coco['categories'] = self.categoriesdata_coco['annotations'] = self.annotationsreturn data_cocodef save_json(self):self.data_transfer()self.data_coco = self.data2coco()# 保存json文件json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder)  # indent=4 更加美观显示if __name__ == '__main__':labelme_json = glob.glob('data/LabelmeData_frame_count/val2017/*.json')  # labelme标注好的.json文件存放目录labelme2coco(labelme_json, 'data/coco_frame_count/annotations/instances_val2017.json')  # 输出结果的存放目录

4、修改训练模型参数

先在pycharm中新建python脚本文件detr_r50_tf.py,代码如下:

import torchpretrained_weights = torch.load('detr-r50-e632da11.pth')num_class = 1  # 类别数
pretrained_weights["model"]["class_embed.weight"].resize_(num_class + 1, 256)
pretrained_weights["model"]["class_embed.bias"].resize_(num_class + 1)
torch.save(pretrained_weights, "detr-r50_%d.pth" % num_class)

将其中类别数改成自己数据集的类别数即可,执行完成后会在目录下生成适合自己数据集类别的预训练模型:

然后在models文件夹下打开detr.py,修改其中的类别数(一定要全部保持一致):

最后打开main.py,修改其中的coco_path(数据存放路径)、output_dir(结果输出路径)、device(没有cuda就改为cpu)、resume(自己生成的预训练模型)。

5、执行main.py来开始训练模型

如果不想跑太多了轮可以修改epochs数:

训练好的模型会保存在结果输出路径中:

跑起来的效果是这样的:

这篇关于DETR实现目标检测(一)-训练自己的数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060920

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核