OrangePi AIpro测评:性能、应用与开发者体验解析

2024-06-14 09:20

本文主要是介绍OrangePi AIpro测评:性能、应用与开发者体验解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


一、OrangePi AIpro介绍

     OrangePi AIpro(8T)采用昇腾AI技术路线,具体为4核64位处理器+AI处理器,集成图形处理器,支持8TOPS AI算力,拥有8GB/16GB LPDDR4X,可以外接32GB/64GB/128GB/256GB eMMC模块,支持双4K高清输出。 Orange Pi AIpro引用了相当丰富的接口,包括两个HDMI输出、GPIO接口、Type-C电源接口、支持SATA/NVMe SSD 2280的M.2插槽、TF插槽、千兆网口、两个USB3.0、一个USB Type-C 3.0、一个Micro USB(串口打印调试功能)、两个MIPI摄像头、一个MIPI屏等,预留电池接口,可广泛适用于AI边缘计算、深度视觉学习及视频流AI分析、视频图像分析、自然语言处理、智能小车、机械臂、人工智能、无人机、云计算、AR/VR、智能安防、智能家居等领域,覆盖 AIoT各个行业。 Orange Pi AIpro支持Ubuntu、openEuler操作系统,满足大多数AI算法原型验证、推理应用开发的需求。

 

应用场景广泛,可广泛适用于AI教学实训、AI算法验证、智能小车、机械臂、边缘计算、无人机、人工智能、云计算、AR/VR、智能安防、智能家居、智能交通等领域。


产品详细图如下:

正面:

 

背面:

 

官网www.orangepi.cn


二、 基础功能测试

收的OrangePi AIpro套装里面只有开发板、充电器、内存卡,为了方便测试,自己额外配置了显示器、鼠标、键盘、USB摄像头,下图是完整搭建好的实物图。

 

1、开机:充电器要插入PWR标识的接口,显示器要插到HDMI0接口(另一个插入不生效),键盘鼠标插入USB接口,连接标识图如下:

 

2、登录:开机之后会进入一个ubuntu22.04的系统登录界面,默认用户名HwHiAiUser,输入密码Mind@123,进入桌面。

3、网络连接测试:桌面右上角连接wifi,输入密码。然后打开终端输入ping www.orangepi.cn,能ping通说明wifi连接正常。

 

4、蓝牙测试:桌面右上角连接蓝牙,经过测试发现,支持与手机蓝牙连接并成功发送一个文件,但不支持与笔记本蓝牙连接。

 

5、VNC远程连接测试:

开发板上默认已经安装好tightvncserver,只需要本地安装一个VNC客户端,下载https://www.realvnc.com/en/connect/download/viewer/

新建一个连接,输入ip+端口(5901),输入用户名,连接时输入密码。

本人也尝试了window自带的远程桌面工具没有成功。

 

成功连接

 

6、USB摄像头测试:

选用了USB500万工业相机,输出格式为MJPJ/YUY2。

 

插入USB摄像头,终端输入cheese,出现相机画面。

 

三、体验AI应用案例

3.1启动


进入目录

cd ~/samples/notebooks


执行sh脚本启动,局域网内的其他设备访问可以加IP地址

./start_notebook.sh 192.168.31.111


浏览器输入ip:port即可访问 ,http://192.168.31.111:8888/

 

3.2 样例说明

目录

样例介绍

01-yolov5

 

YOLOv5是一种单阶段目标检测算法,在这个样例中,我们选取了YOLOv5s,它是YOLOv5系列中较为轻量的网络,适合在边缘设备部署,进行实时目标检测。

02-ocr

 

传统定义的Optical Character Recognition(光学字符识别)主要完成文档扫描类的工作。

如今,OCR一般指Scene Text Recognition (场景文字识别),主要面向自然场景。 OCR两阶段方法一般包含两个模型,检测模型负责找出图像或视频中的文字位置,识别模型负责将图像信息转换为文本信息。

此样例中,我们使用的检测模型为CTPN,识别模型则是SVTR

CTPN模型基于Faster RCNN模型修改而来,而SVTR则基于近几年十分流行的Vision Transformer模型。

03-resnet

 

ResNet是最经典的视觉分类网络之一,在这个样例中我们选取了ResNet50,也是ResNet最常用的变体。

04-image-HDR-enhance

 

功能介绍:使用模型对曝光不足的输入图片进行HDR效果增强。

样例输入:png图像。

样例输出:增强后png图像

05-cartoonGAN_picture

功能:使用cartoonGAN模型对输入图片进行卡通化处理。

样例输入:原始图片jpg文件。

样例输出:卡通图象。

06-human_protein_map_classification

功能:对蛋白质图像进行自动化分类评估
样例输入:未标注的蛋白质荧光显微图片
样例输出:已经标注分类的蛋白质图谱

07-Unet++

功能:对图像中的细胞核进行分割
样例输入:未标注的生物细胞图像
样例输出:已经分割的细胞核图像

08-portrait_pictures

目前工业界通用的人像分割主要采用绿屏技术,需要专门的绿屏设备及环境,不利于普通用户的广泛使用。在这个样例中,我们使用了一个深度学习神经网络PortraitNet,能够实时地进行人像分割和背景替换。

09-speech-recognition

自动语音识别,即ASR,指借助计算机将语音转换为文本。在这个样例中,我们使用了基于深度学习的语音识别模型WeNet,借助我们的昇腾Atlas 200I DK A2,可以进行高性能推理。

3.3 yolov5样例

运行yolov5样例,打开main.ipynb文件

选择推理模式。"infer_mode"有三个取值:image, camera, video,分别对应图片推理、摄像头实时推理和视频推理。前面已经测试USB相机ok,这里就选择摄像头实时推理。

infer_mode = 'camera'   //这里选择摄像头实时推理if infer_mode == 'image':img_path = 'world_cup.jpg'infer_image(img_path, model, labels_dict, cfg)elif infer_mode == 'camera':infer_camera(model, labels_dict, cfg)elif infer_mode == 'video':video_path = 'racing.mp4'infer_video(video_path, model, labels_dict, cfg)

 

识别效果如下:能够正确识别剪刀scissors和键盘keyboard

 

 

再修改infer_camera函数,打印下推理时间

   while True:start_time = time.time()  # 开始计时# 对摄像头每一帧进行推理和可视化_, img_frame = cap.read()image_pred = infer_frame_with_vis(img_frame, model, labels_dict, cfg)image_widget.value = img2bytes(image_pred)end_time = time.time()  # 结束计时print(f"推理时间: {end_time - start_time:.4f} 秒")  # 打印每一帧的推理时间

平均每帧0.06sfps16.66,速度非常快

 

四、总结

有幸受到官方的邀请,评测开发板Orange Pi AIpro,由于时间有限测试了开发板部分基础功能、运行了AI应用案例。

优势:

1、接口丰富:HDMI显示、键鼠、WIFI、蓝牙、USB摄像头等功能运行正常。

2、推理速度快:处理图像分类、目标检测效率高,fps能够达到16.66,

3、资料详细,案例丰富,社区和论坛比较完善,有助于快速学习

不足:

1、更改密码后系统进入有问题(目前解决方案是先选择ubuntu on Xorg进入,再退出,再选择Xfce Session(Default))

2、两个HDMI接口只有一个可以使用

 

这篇关于OrangePi AIpro测评:性能、应用与开发者体验解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059998

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到