DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

2024-06-14 06:04

本文主要是介绍DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程

flyfish

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的更新

DeepSORT(目标跟踪算法)中卡尔曼增益的理解

DeepSORT(目标跟踪算法)中的卡尔曼滤波 - 看了就会的状态转移矩阵

DeepSORT(目标跟踪算法)中的初始化卡尔曼滤波器的状态向量和协方差矩阵

DeepSORT(目标跟踪算法)中卡尔曼滤波器中的预测

DeepSORT(目标跟踪算法)中自由度决定卡方分布的形状

DeepSORT(目标跟踪算法)中的解三角方程计算标准化残差(解线性方程组)

DeepSORT(目标跟踪算法)中的计算观测值与状态估计的马氏距离

DeepSORT(目标跟踪算法)中的马氏距离详解(很详细)

DeepSORT(目标跟踪算法)中 可以设置阈值进行异常检测或目标跟踪的原因

DeepSORT(目标跟踪算法)中的数值表格与调参的关系

卡尔曼滤波的完整流程

1. 初始化

在第一个时刻,需要初始化状态向量和误差协方差矩阵:

  • 状态向量(State Vector) x 0 \mathbf{x}_0 x0:对系统初始状态的估计。
  • 误差协方差矩阵(Error Covariance Matrix) P 0 \mathbf{P}_0 P0:初始状态估计的不确定性。

2. 预测步骤(Prediction Step)

预测系统在下一个时刻的状态和误差协方差矩阵。

  • 预测状态(Predicted State) x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1 x ^ k ∣ k − 1 = A k − 1 x ^ k − 1 ∣ k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1x^k1∣k1+Bk1uk1其中, A k − 1 \mathbf{A}_{k-1} Ak1 是状态转移矩阵, B k − 1 \mathbf{B}_{k-1} Bk1 是控制输入矩阵, u k − 1 \mathbf{u}_{k-1} uk1 是控制输入。
  • 预测误差协方差矩阵(Predicted Error Covariance Matrix) P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1 P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1其中, Q k − 1 \mathbf{Q}_{k-1} Qk1 是过程噪声协方差矩阵。

3. 更新步骤(Update Step)

利用新测量数据更新预测的状态和误差协方差矩阵。

  • 卡尔曼增益(Kalman Gain) K k \mathbf{K}_k Kk K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1其中, H k \mathbf{H}_k Hk 是观测矩阵, R k \mathbf{R}_k Rk 是观测噪声协方差矩阵。
  • 更新状态(Updated State) x ^ k ∣ k \hat{\mathbf{x}}_{k|k} x^kk x ^ k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) x^kk=x^kk1+Kk(zkHkx^kk1)其中, z k \mathbf{z}_k zk 是测量向量。
  • 更新误差协方差矩阵(Updated Error Covariance Matrix) P k ∣ k \mathbf{P}_{k|k} Pkk P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1其中, I \mathbf{I} I 是单位矩阵。

4. 循环迭代

重复步骤2和步骤3,处理每个新的测量数据。

各个字母的含义

1. 预测步骤(Prediction Step)

预测步骤包括状态预测和误差协方差预测。

状态预测(State Prediction)

x ^ k ∣ k − 1 = A k − 1 x k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1xk1+Bk1uk1

  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量(在时间 k k k 时的先验估计)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵,描述系统从时间 k − 1 k-1 k1 到时间 k k k 的动态。
  • x k − 1 \mathbf{x}_{k-1} xk1:在时间 k − 1 k-1 k1 时的状态向量(后验估计)。
  • B k − 1 \mathbf{B}_{k-1} Bk1:控制输入矩阵,描述控制输入对系统状态的影响。
  • u k − 1 \mathbf{u}_{k-1} uk1:在时间 k − 1 k-1 k1 时的控制输入向量。
误差协方差预测(Error Covariance Prediction)

P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1

  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵(在时间 k k k 时的先验估计的不确定性)。
  • P k − 1 ∣ k − 1 \mathbf{P}_{k-1|k-1} Pk1∣k1:在时间 k − 1 k-1 k1 时的误差协方差矩阵(后验估计的不确定性)。
  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵。
  • Q k − 1 \mathbf{Q}_{k-1} Qk1:过程噪声协方差矩阵,描述系统过程噪声的不确定性。

2. 更新步骤(Update Step)

更新步骤包括计算卡尔曼增益、更新状态估计和更新误差协方差矩阵。

计算卡尔曼增益(Kalman Gain Calculation)

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 \mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T (\mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1

  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵,描述测量值对状态估计的影响。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵,描述状态向量到测量向量的映射。
  • R k \mathbf{R}_k Rk:测量噪声协方差矩阵,描述测量噪声的不确定性。
更新状态估计(State Update)

x k ∣ k = x ^ k ∣ k − 1 + K k ( z k − H k x ^ k ∣ k − 1 ) \mathbf{x}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k (\mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}) xkk=x^kk1+Kk(zkHkx^kk1)

  • x k ∣ k \mathbf{x}_{k|k} xkk:更新后的状态向量(在时间 k k k 时的后验估计)。
  • x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1:预测的状态向量。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • z k \mathbf{z}_k zk:在时间 k k k 时的实际测量向量。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • H k x ^ k ∣ k − 1 \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1} Hkx^kk1:预测测量值。
更新误差协方差矩阵(Error Covariance Update)

P k ∣ k = ( I − K k H k ) P k ∣ k − 1 \mathbf{P}_{k|k} = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1} Pkk=(IKkHk)Pkk1

  • P k ∣ k \mathbf{P}_{k|k} Pkk:更新后的误差协方差矩阵(在时间 k k k 时的后验估计的不确定性)。
  • I \mathbf{I} I:单位矩阵。
  • K k \mathbf{K}_k Kk:卡尔曼增益矩阵。
  • H k \mathbf{H}_k Hk:观测矩阵。
  • P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1:预测的误差协方差矩阵。

这篇关于DeepSORT(目标跟踪算法) 卡尔曼滤波的完整流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059574

相关文章

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo