【OceanBase DBA早下班系列】—— 性能问题如何 “拍CT“ (一键获取火焰图和扁鹊图)

2024-06-14 01:28

本文主要是介绍【OceanBase DBA早下班系列】—— 性能问题如何 “拍CT“ (一键获取火焰图和扁鹊图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言

最近接连遇到几个客户的环境在排查集群性能问题,总结了一下,直接教大家如何去获取火焰图、扁鹊图(调用关系图),直击要害,就像是内脏的疾病去医院看病,上来先照一个CT,通过分析CT,大概的毛病也就定位的七七八八了。

2. 火焰图/扁鹊图一键收集

2.1. 步骤一:安装部署obdiag

参考文档: OceanBase分布式数据库-海量数据 笔笔算数

安装obdiag并配置被诊断集群信息(~/.obdiag/config.yml),说明:obdiag 是一款25MB大小的针对OceanBase的黑屏命令行的诊断小工具,功能强大,部署简单。

sudo yum install -y yum-utils
sudo yum-config-manager --add-repo https://mirrors.aliyun.com/oceanbase/OceanBase.repo
sudo yum install -y oceanbase-diagnostic-tool
source /usr/local/oceanbase-diagnostic-tool/init.sh# 配置被诊断集群信息
obdiag config -hxx.xx.xx.xx -uroot@sys -Pxxxx -p*****

2.2. 步骤二:一键收集火焰图/扁鹊图

obdiag gather perf

收集过程如图:

1718261610

解压之后的结果

$tree
.
├── flame.data # 火焰图的数据,后面会用到
├── flame.viz
├── sample.data
├── sample.viz # 扁鹊图的数据,后面会用到
└── top.txt

2.3. 步骤三:将火焰图/扁鹊图数据可视化

git clone https://github.com/brendangregg/FlameGraph.git# 将上面采集到的flame.viz数据经过两次处理,就可以火焰图
./FlameGraph/stackcollapse-perf.pl flame.viz | ./FlameGraph/flamegraph.pl - > perf.svg

火焰图:

1718268132

扁鹊图

perfdata2graph.py

#!/usr/bin/pythonimport sys
import os
import subprocess
import datetimeclass Edge:def __init__(self):self.count = 0self.to = Noneself.label = Noneself.penwidth = 1self.weight = 1.self.color = "#000000"class Node:def __init__(self):self.identify = ""self.name = ""self.count = 0self.self_count = 0self.id = Noneself.label = Noneself.color = "#F8F8F8"self.edges = {}def __str__(self):return "id: %s, name: %s, count %s, edges %s" % (self.id, self.name, self.count, len(self.edges))class PerfToGraph:def __init__(self, fmt = "svg", node_drop_pct = 1., edge_drop_pct = None):self.fmt = fmtself.all_nodes = {}self.samples = 1self.s100 = 100.self.node_drop_pct = node_drop_pctself.edge_drop_pct = edge_drop_pctself.next_edge_color = 0if edge_drop_pct is None:self.edge_drop_pct = node_drop_pct / 5.self.node_drop_cnt = 0self.edge_drop_cnt = 0self.colors = [(0.02, "#FAFAF0"),(0.2, "#FAFAD2"),(1.0, "#F9EBB6"),(2.0, "#F9DB9B"),(3.0, "#F8CC7F"),(5.0, "#F7BC63"),(7.0, "#FF8B01"),(9.0, "#FA6F01"),(12.0, "#F55301"),(15.0, "#F03801"),(19.0, "#EB1C01"),(23.0, "#E60001")]self.edge_colors = ["#FF8B01","#EB1C01","#DC92EF","#9653B8","#66B031","#D9CA0C","#BDBDBD","#696969","#113866","#5CBFAC","#1120A8","#960144","#EA52B2"]def convert(self):self.read_stdin()self.formalize()self.output()def set_pen_width(self, e):pct = e.count * 100. / self.samplesif pct > 10:e.penwidth = 3 + min(pct, 100) * 2. / 100elif pct > 1:e.penwidth = 1 + pct * 2. / 10else:e.penwidth = 1def set_edge_weight(self, e):e.weight = e.count * 100. / self.samplesif e.weight > 100:e.weight = 100elif e.weight > 10:e.weight = 10 + e.weight / 10.def set_edge_color(self, e):i = self.next_edge_colorself.next_edge_color += 1e.color = self.edge_colors[i % len(self.edge_colors)];def set_node_color(self, n):v = n.self_count / self.s100for p in self.colors:if v >= p[0]:n.color = p[1]def get_node(self, identify, name):if self.all_nodes.has_key(identify):return self.all_nodes[identify]n = Node()n.identify = identifyn.name = nameself.all_nodes[identify] = nreturn ndef add_edge(self, f, t):if f.edges.has_key(t.identify):e = f.edges[t.identify]e.count += 1else:e = Edge()e.to = te.count = 1f.edges[t.identify] = edef read_stdin(self):# $ escape not needed?cmd = "sed -e 's/<.*>//g' -e 's/ (.*$//' -e 's/+0x.*//g' -e '/^[^\t]/d' -e 's/^\s*//'"sub = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell = True)prev = Noneself.samples = 1for l in sub.stdout:l = l.strip()if (not l) and (not prev):# avoding continous empty linescontinuetmp = l.split(' ')addr = tmp[0]name = (" ".join(tmp[1:])).strip()if '[unknown]' == name:name = addrif not l:addr = 'fake_addr'name = '::ALL::'# we use name to identify nodesn = self.get_node(name, name)if prev == n:continuen.count += 1if prev:self.add_edge(n, prev)prev = nif not l:self.samples += 1prev = Nonedef formalize(self):self.s100 = self.samples / 100.self.node_drop_cnt = self.samples * self.node_drop_pct / 100self.edge_drop_cnt = self.samples * self.edge_drop_pct / 100i = 0;for n in self.all_nodes.values():n.id = "n%s" % (i)i+=1n.self_count = n.count - sum([x.count for x in n.edges.values()])n.label = "%s\\nTotal: %.2f%% | Call: %.2f%%\\nSelf: %.2f%%(%s)" % (n.name.replace("::", "\\n"), n.count/self.s100, (n.count - n.self_count)/self.s100, n.self_count/self.s100, n.self_count)self.set_node_color(n)for e in n.edges.values():e.label = "%.2f%%" % (e.count/self.s100)self.set_pen_width(e)self.set_edge_weight(e)self.set_edge_color(e)def to_dot(self):out = []out.append("""digraph call_graph_for_perf_data {style = "perf.css";node [shape = box, style=filled ];""")out.append('note [ label = "%s\\nTotal samples: %d\\nDrop nodes with <= %.2f%%(%d)\\nDrop edges with <= %.2f%%(%d)", fillcolor="#00AFFF" ];' % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), self.samples, self.node_drop_pct, int(self.node_drop_cnt), self.edge_drop_pct, int(self.edge_drop_cnt)))for n in self.all_nodes.values():if n.count <= self.node_drop_cnt:continueout.append('%s [ label = "%s", tooltip = "%s", fillcolor="%s"];' % (n.id, n.label, n.name, n.color))for n in self.all_nodes.values():if n.count <= self.node_drop_cnt:continuefor e in n.edges.values():if e.count <= self.edge_drop_cnt or e.to.count <= self.node_drop_cnt:continuetip = 'edgetooltip = "%s ==> %s", labeltooltip = "%s ==> %s"' % (n.name, e.to.name, n.name, e.to.name)out.append('%s -> %s [ penwidth = %.2f, weight = %f, color = "%s", label = "%s", fontcolor = "%s", %s ];' % (n.id, e.to.id, e.penwidth, e.weight, e.color, e.label, e.color, tip))out.append("}")return "\n".join(out)def output(self):if "dot" == self.fmt:print self.to_dot()elif "svg" == self.fmt:cmd = "dot -T svg"sub = subprocess.Popen(cmd, stdin=subprocess.PIPE, shell = True)dot = self.to_dot()sub.communicate(input = dot)elif "top" == self.fmt:try:for n in sorted(self.all_nodes.values(), key = lambda n : n.self_count, reverse = True):print "%s %.2f%%" % (n.name, n.self_count/self.s100)except:passif __name__ == "__main__":support_fmt = { "svg" : None, "dot" : None, "top" : None }if len(sys.argv) < 2 or (not support_fmt.has_key(sys.argv[1])):print "%s dot/svg/top [node_drop_perent] [edge_drop_percent]" % (sys.argv[0])sys.exit(1)fmt = sys.argv[1]nd_pct = len(sys.argv) > 2 and float(sys.argv[2]) or 1.0ed_pct = len(sys.argv) > 3 and float(sys.argv[3]) or 0.2c = PerfToGraph(fmt, nd_pct, ed_pct)c.convert()

# 生成扁鹊图
cat sample.viz | ./perfdata2graph.py svg sample.svg

1718268035

3. obdiag 一键收集火焰图和扁鹊图原理

其实obdiag收集信息是依赖于远端ob节点上的perf工具,所以务必要在ob节点上安装perf工具。相当于obdiag帮你去各个节点上执行了如下命令:

# 注意:-p 后面是进程ID,改成你要 perf 的进程## 生成调用图(扁鹊图)
sudo perf record -e cycles -c 100000000 -p 87741 -g -- sleep 20
sudo perf script -F ip,sym -f > sample.viz## 生成火焰图
sudo perf record -F 99 -p 87741 -g -- sleep 20
sudo perf script > flame.viz

感兴趣的可以通过obdiag gather perf -v 查看详细的obdiag 日志,通过日志你就能大概知道obdiag的执行过程了。

4. 附录

  • obdiag 下载地址: OceanBase分布式数据库-海量数据 笔笔算数
  • obdiag 官方文档: OceanBase分布式数据库-海量数据 笔笔算数
  • obdiag github地址:  GitHub - oceanbase/obdiag: obdiag (OceanBase Diagnostic Tool) is designed to help OceanBase users quickly gather necessary information and analyze the root cause of the problem.
  • obdiag SIG 营地: 诊断工具 · OceanBase 技术交流

这篇关于【OceanBase DBA早下班系列】—— 性能问题如何 “拍CT“ (一键获取火焰图和扁鹊图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058985

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe