【智能算法应用】基于粒子群算法的多尺度Retinex图像去雾方法

2024-06-14 01:12

本文主要是介绍【智能算法应用】基于粒子群算法的多尺度Retinex图像去雾方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.算法原理
    • 2.粒子群算法的多尺度Retinex图像去雾方法
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.算法原理

【智能算法】粒子群算法(PSO)原理及实现

多尺度Retinex算法

在Retinex算法中,雾化图像的形成可以总结为入射光和反射光的乘积:
I ( x , y ) = L ( x , y ) × R ( x , y ) (1) I(x,y)=L(x,y)\times R(x,y)\tag{1} I(x,y)=L(x,y)×R(x,y)(1)
其中,I(x,y)表示图像亮度,R(x,y)和L(x,y)分别代表反射分量和照明分量。
用于模拟周围环境的函数类似于通常用于单个神经元感受野的高斯差分函数:
L ( x , y ) = I ( x , y ) ∗ F ( x , y ) (2) L(x,y)=I(x,y)*F(x,y)\tag{2} L(x,y)=I(x,y)F(x,y)(2)
周围函数F(x,y):
F ( x , y ) = K exp ( − x 2 + y 2 2 σ 2 ) (3) F(x,y)=K\text{exp}\left(-\frac{x^2+y^2}{2\sigma^2}\right)\tag{3} F(x,y)=Kexp(2σ2x2+y2)(3)
其中,σ 是高斯周围空间尺度参数。下面展示不同σ 高斯函数图像,较大的σ 将强调色彩保真度但失去更多图像细节信息,而较小的 σ 则相反。
在这里插入图片描述
在这里插入图片描述

单尺度Retinex (single-scale Retinex, SSR) 算法:
r S S R , i ( x , y ) = l o g R i ( x , y ) = log ⁡ ( I i ( x , y ) ) − log ⁡ ( F i ( x , y ) ∗ I i ( x , y ) ) (4) \begin{aligned}&r_{SSR,i}(x,y)=\mathrm{log}R_{i}(x,y)\\&=\log(I_{i}(x,y))-\log(F_{i}(x,y)*I_{i}(x,y))\end{aligned}\tag{4} rSSR,i(x,y)=logRi(x,y)=log(Ii(x,y))log(Fi(x,y)Ii(x,y))(4)

多尺度Retinex(Multi-scale Retinex, MSR) 被提出来通过不同尺度的加权叠加来抵消单一尺度的影响:
R m s r , i = ∑ n = 1 N w n , i r n , i = ∑ n = 1 N w n , i ( log ⁡ ( I i ( x , y ) ) − log ⁡ ( F n , i ( x , y ) ∗ I i ( x , y ) ) ) (5) \begin{aligned}&R_{msr,i}=\sum_{n=1}^{N}w_{n,i}r_{n,i}\\&=\sum_{n=1}^{N}w_{n,i}\big(\log(I_{i}(x,y))-\log\big(F_{n,i}(x,y)*I_{i}(x,y)\big)\big)\end{aligned}\tag{5} Rmsr,i=n=1Nwn,irn,i=n=1Nwn,i(log(Ii(x,y))log(Fn,i(x,y)Ii(x,y)))(5)

2.粒子群算法的多尺度Retinex图像去雾方法

考虑到去雾后的图像颜色自然,细节清晰和信息保留,适应度函数定义为:
P S N R = 20 ⋅ log ⁡ 10 ( M A X I M S E ) \mathrm{PSNR}=20\cdot\log_{10}\left(\frac{\mathrm{MAX}_{I}}{\sqrt{\mathrm{MSE}}}\right) PSNR=20log10(MSE MAXI)

3.结果展示

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4.参考文献

[1] Yao L P, Pan Z. The Retinex-based image dehazing using a particle swarm optimization method[J]. Multimedia Tools and Applications, 2021, 80(3): 3425-3442.

5.代码获取

这篇关于【智能算法应用】基于粒子群算法的多尺度Retinex图像去雾方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058958

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat