Whisper语音识别 -- 自回归解码分析

2024-06-13 21:36

本文主要是介绍Whisper语音识别 -- 自回归解码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

Whisper 是由 OpenAI 开发的一种先进语音识别系统。它采用深度学习技术,能够高效、准确地将语音转换为文本。Whisper 支持多种语言和口音,并且在处理背景噪音和语音变异方面表现出色。其广泛应用于语音助手、翻译服务、字幕生成等领域,为用户提供了更流畅的语音交互体验。作为一个开源项目,Whisper 鼓励开发者和研究人员进一步优化和创新。
在这里插入图片描述
作者将解码过程整理成 简单的python代码进行讲解

核心思想

whisper解码核心是 基于自回归解码的token游戏 ,换句话说他的参数读取是通过传入token id的形式,即采用大语言模型的prompt范式(whisper的解码器一定程度上也是个大语言模型,虽然语音训练样本token数远不及纯文本token数)
h
图中除了识别结果的框框大多数都是prompt工程, 常用的token id 如图:
在这里插入图片描述

自回归解码

在这里插入图片描述

详细解释放在代码中啦

def main():"""解码器须构建Deocder的prompt,序列为【SOT,语种,任务】, 本文中是 model.sot_sequence其中SOT:50258语种:50332,50309,50333,50335,50273,...任务:transcribe 转写 50359, translate 翻译 50358""""""加载whisper模型"""encoder_onnx_file = './small-encoder.int8.onnx'decoder_onnx_file = './small-decoder.int8.onnx'tokenizer_file = './small-tokens.txt'model = OnnxModel(encoder_onnx_file, decoder_onnx_file)token_table = load_tokenizer(tokenizer_file) # token id to char """提取MEL特征"""wav_file = "output.wav"mel = compute_features(wav_file)"""计算encoder的K/V编码 """# 交叉注意力 encoder:K/V, with decoder:Qn_layer_cross_k, n_layer_cross_v = model.run_encoder(mel)# 自注意力 decoder:K/V, with decoder:Qn_layer_self_k_cache, n_layer_self_v_cache = model.get_self_cache()"""检测语种"""lang = model.detect_language(n_layer_cross_k, n_layer_cross_v)model.sot_sequence[1] = lang"""任务选择"""# task = model.translatetask = model.transcribemodel.sot_sequence[2] = task"""根据prompt进行首次解码"""tokens = torch.tensor([model.sot_sequence], dtype=torch.int64)offset = torch.zeros(1, dtype=torch.int64)logits, n_layer_self_k_cache, n_layer_self_v_cache = model.run_decoder(tokens=tokens,n_layer_self_k_cache=n_layer_self_k_cache,n_layer_self_v_cache=n_layer_self_v_cache,n_layer_cross_k=n_layer_cross_k,n_layer_cross_v=n_layer_cross_v,offset=offset,)offset += len(model.sot_sequence)logits = logits[0, -1] # token 声学后验model.suppress_tokens(logits, is_initial=True) # 无效token后验抑制"""自回归解码"""max_token_id = logits.argmax(dim=-1) # 选择后验中最大输出的token【贪心解码】results = []sentence = {'start':0,'end':0,'text':b""} sentences = []for i in range(model.n_text_ctx):# 打印token属性if max_token_id.item() == model.sot:print("iter:%8s docode token id:%8s [sot]"%(i,max_token_id.item()))elif max_token_id.item() == model.eot:print("iter:%8s docode token id:%8s [eot]"%(i,max_token_id.item()))elif max_token_id.item() >= model.timestamp_begin:print("iter:%8s docode token id:%8s [boundary]"%(i,max_token_id.item()))else:print("iter:%8s docode token id:%8s [char]"%(i,max_token_id.item()))# eot 结束if max_token_id.item() == model.eot:print("Finish !!")break# 检测到时间戳if max_token_id.item()>=model.timestamp_begin:timestamp = ((max_token_id.item()-model.timestamp_begin)*model.time_precision)# 遇到结束符if sentence['text']:sentence['end'] = timestampsentence['text'] = sentence['text'].decode().strip()print(sentence)sentences.append(sentence)sentence = {'start':0,'end':0,'text':b""}# 遇到开始符else:sentence['start'] = timestampelse:decode_token = base64.b64decode(token_table[max_token_id.item()])sentence['text'] += decode_tokenresults.append(max_token_id.item())tokens = torch.tensor([[results[-1]]])# deocder 单步解码logits, n_layer_self_k_cache, n_layer_self_v_cache = model.run_decoder(tokens=tokens,n_layer_self_k_cache=n_layer_self_k_cache,n_layer_self_v_cache=n_layer_self_v_cache,n_layer_cross_k=n_layer_cross_k,n_layer_cross_v=n_layer_cross_v,offset=offset,)offset += 1logits = logits[0, -1]model.suppress_tokens(logits, is_initial=False)max_token_id = logits.argmax(dim=-1) # 贪心搜索

没错连时间戳也是token形式~,下面是运行结果感受一下。我们在边界处对句子进行保存
在这里插入图片描述

以上就是whisper解码的基本原理,感兴趣的同学关注走一波

这篇关于Whisper语音识别 -- 自回归解码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1058482

相关文章

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

C#继承之里氏替换原则分析

《C#继承之里氏替换原则分析》:本文主要介绍C#继承之里氏替换原则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#里氏替换原则一.概念二.语法表现三.类型检查与转换总结C#里氏替换原则一.概念里氏替换原则是面向对象设计的基本原则之一:核心思想:所有引py

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑