对焦算法实现总结

2024-06-13 19:58
文章标签 算法 实现 总结 对焦

本文主要是介绍对焦算法实现总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

  本篇主要是对实现对焦算法的总结记录。

对焦模式

  常用模式:CAF、TOUCH focus、auto focus。
  CAF:1、判断条件:环境亮度变化、陀螺仪之类传感器数据变化2、检测到环境亮度或者传感器数据变化超过一定阀值3、继续检测到环境亮度或者传感器数据变化已经稳定4、触发CAFTouch focus1、点击预览界面时候触发2、点击位置坐标为对焦点,传入对焦算法中。auto focus:1、点击拍照时候触发2、对焦点为预览界面中心。

对焦算法结构

       1、获得当前帧图像2、图像清晰度计算3、下一步马达位置计算4、马达驱动驱动马达之后,从新获得新的帧图像,继续清晰度计算,获得信息对焦位置,不断循环,直到找到最高清晰度的马达位置,对焦完成。
  常用的清晰度评价算法有:频域函数  :对焦越好、高频部分越多,细节越多,图像越清晰。灰度函数  :对焦越好,和周围相邻灰度点差值越大,边缘越清晰,图像越清晰。信息熵函数:对焦越好,图像包含的信息熵越大,包含信息量更大,图像越清晰。统计学函数:对焦越好,直方图多样性越好,图像越清晰。
  常用的搜索算法有:1、函数逼近法2、Fibbonacci搜索法3、爬山搜索算法
  对焦算法中,基本都是在不停的做状态机查询,常用的状态有:1、等待对焦触发2、对焦参数更新(如图像分辨率变化或者对焦ROI坐标变化)3、对焦工作中4、对焦状态返回(对焦成功或者失败)

驱动马达

  	开环马达:以当前主流手机为例,驱动马达移动之后,自测需要50ms左右才能稳定。闭环马达:以当前主流手机为例,驱动马达移动之后,自测需要15ms左右才能稳定。闭环马达对比开环马达优势:稳定速度更快,功耗更小。

时间消耗

  	1、等待图像稳定2、马达推动3、状态机查询、搜索算法、清晰度评价算法等程序运行。
  	只要时间消耗在:等待图像稳定。以当前主流手机为例:1、30fps帧率为例,一帧图像为33ms左右。若为开环马达,等待帧数需要为3、4帧。在这上面,每推动一次马达,消耗时间为100ms-133ms左右。若为闭环马达,需要等待2、3帧,每推动一次马达,消耗时间为66ms-100ms左右。
  	        2、马达推动稳定时间(15ms左右 或者 50ms左右)注意:因为马达推动稳定时间和图像帧收集等待时间为并行,所以这两者时间不用叠加。3、程序运行时间(15ms以下)这些程序中,主要是清晰度计算花费时间,但是也不多,自测在几毫秒就。这部分时间和马达驱动时间为串行,需要叠加。和图像帧收集等待时间并行。4、自测普通对焦一次时间消耗大致在600ms-1000ms左右,随着帧率降低,对焦消耗时间越多。以上,对焦时间消耗主要为图像帧稳定上。

快速对焦

   常见快速对焦1、激光对焦2、双摄视差对焦3、PdAF对焦这些对焦方式,通过激光、视差、相位差之类方式,直接计算出大致的对焦点,然后再微调,实现对焦。很大程度上减少了对焦搜索范围,大致上可以将对焦时间优化到300ms--500ms左右。另外在快速对焦中,有些算法是直接计算出大致对焦点,没有继续微调对焦,这样对焦时间时间可以在100ms以内或左右。不过对焦效果
和对焦结果一致性会差一些。

注意

  	1、马达推动之后,需要等待图像稳定之后,才能计算清晰度2、图像清晰度计算算法选择,需要对噪点之类不太敏感3、对焦区域ROI的选择不能太小或者太大,1280X960的区域,可以选择160X160区域4、如果有快速对焦功能,需要判断是否快速对焦成功,如果失败,则需要算法切换回普通对焦模式上,从新对焦。

这篇关于对焦算法实现总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058281

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到