OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用

本文主要是介绍OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

1.功能描述

ShapeContextDistanceExtractor是OpenCV库中的一个类,主要用于计算形状之间的相似度或距离。它是基于形状上下文(Shape Context)特征描述符的,这是一种在计算机视觉和图像处理领域广泛使用的形状匹配技术。该方法由Belongie等人在2000年代初提出,通过分析形状边界点的邻域分布来描述形状特征,进而计算形状间的相似度。

2.使用场景

形状匹配:在图像数据库中查找相似的形状或对象。
物体识别:作为特征提取的一部分,辅助分类或识别任务。
内容基于的图像检索:根据形状内容搜索图像。

3.函数computeDistance

计算由其轮廓定义的两个形状之间的形状距离,首先提取每个轮廓的关键点及其邻域信息,然后通过比较不同轮廓间对应关键点的邻域分布差异来量化形状间的距离。

3.1函数原型


virtual float cv::ShapeDistanceExtractor::computeDistance	(
InputArray 	contour1,
InputArray 	contour2 
)		

3.2 参数

  • 参数contour1 定义第一个形状的轮廓.
  • 参数contour2 定义第二个形状的轮廓…

4 示例代码

#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/shape.hpp"#include <iostream>
#include <opencv2/core/utility.hpp>
#include <string>
using namespace std;
using namespace cv;static vector< Point > simpleContour( const Mat& currentQuery, int n = 300 )
{vector< vector< Point > > _contoursQuery;vector< Point > contoursQuery;findContours( currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE );for ( size_t border = 0; border < _contoursQuery.size(); border++ ){for ( size_t p = 0; p < _contoursQuery[ border ].size(); p++ ){contoursQuery.push_back( _contoursQuery[ border ][ p ] );}}// In case actual number of points is less than nint dummy = 0;for ( int add = ( int )contoursQuery.size() - 1; add < n; add++ ){contoursQuery.push_back( contoursQuery[ dummy++ ] );  // adding dummy values}// 均匀采样cv::randShuffle( contoursQuery );vector< Point > cont;for ( int i = 0; i < n; i++ ){cont.push_back( contoursQuery[ i ] );}return cont;
}
int main( int argc, char** argv )
{string path = "/media/dingxin/data/study/OpenCV/sources/images/shape/";cv::Ptr< cv::ShapeContextDistanceExtractor > mysc = cv::createShapeContextDistanceExtractor();Size sz2Sh( 300, 300 );stringstream queryName;int indexQuery = 1;queryName << path << indexQuery << ".jpg";Mat query = imread( queryName.str(), IMREAD_GRAYSCALE );Mat queryToShow;resize( query, queryToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );imshow( "QUERY", queryToShow );moveWindow( "TEST", 0, 0 );vector< Point > contQuery = simpleContour( query );int bestMatch             = 0;float bestDis             = FLT_MAX;for ( int ii = 1; ii <= 4; ii++ ){if ( ii == indexQuery )continue;waitKey( 30 );stringstream iiname;iiname << path << ii << ".jpg";cout << "name: " << iiname.str() << endl;Mat iiIm = imread( iiname.str(), 0 );Mat iiToShow;resize( iiIm, iiToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );imshow( "TEST", iiToShow );moveWindow( "TEST", sz2Sh.width + 50, 0 );vector< Point > contii = simpleContour( iiIm );float dis              = mysc->computeDistance( contQuery, contii );//获取匹配度最佳的id和匹配距离值if ( dis < bestDis ){bestMatch = ii;bestDis   = dis;}std::cout << " distance between " << queryName.str() << " and " << iiname.str() << " is: " << dis << std::endl;}destroyWindow( "TEST" );stringstream bestname;bestname << path << bestMatch << ".jpg";Mat iiIm = imread( bestname.str(), 0 );Mat bestToShow;resize( iiIm, bestToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT );imshow( "BEST MATCH", bestToShow );moveWindow( "BEST MATCH", sz2Sh.width + 50, 0 );waitKey();return 0;
}

运行结果

我一共选了4张图,拿第一张图跟其他三张图比较,看哪个图跟第一张图里的足球形状匹配的最好。四张图如下:

运行结果:
在这里插入图片描述
命令行输出结果:
在这里插入图片描述

这篇关于OpenCV计算形状之间的相似度ShapeContextDistanceExtractor类的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058139

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND