【动态规划算法题记录】70. 爬楼梯——递归/动态规划

2024-06-13 18:04

本文主要是介绍【动态规划算法题记录】70. 爬楼梯——递归/动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

题目分析

递归法(超出时间限制)

在这里插入图片描述

  1. 递归参数与返回值
    void reversal(int i, int k)
    每次我们处理第i个台阶到第k个台阶之间的可能性。这里我把结果int cnt放在类成员中了,所以直接在函数中进行处理,不用返回。
  2. 递归终止条件
    当我们处理到最上面的台阶了,也就是reversal(n, n)就可以结束当前递归。
  3. 单层递归逻辑
    单层递归中,我们再将区间(i, k)细分下去:因为我们每次只能上一级或两级台阶,并且上了台阶之后才能处理更高层的范围,所以在缩小范围时,我们针对的是区间的左边。也就是:
for(int j = 1; j <= (k-i) && j <=2; j++){reversal(i+j, k);}

其中,j就是我们上台阶的可能性,它的取值要小于等于2不能超过区间的大小

最终的cpp递归代码:

class Solution {
private:int cnt;
public:void reversal(int i, int k){    // 在第i个台阶到第k个台阶之间做决策// 递归终止条件:已经到最上面的台阶,cnt加一并返回if(i == k){cnt++;return;}// 单层递归:从第i个台阶到第k个台阶的可能性// j在这里代表是上几个台阶for(int j = 1; j <= (k-i) && j <=2; j++){reversal(i+j, k);}}int climbStairs(int n) {cnt = 0;reversal(0, n);return cnt;}
};

动态规划

  1. 确定dp数组以及下标的含义
    dp[i]:爬到第i级台阶的方法数量。

  2. 确定递推公式
    dp[i] = dp[i-1] + dp[i-2]

因为我们只有两种上楼梯的方法,也即上一级台阶或两级台阶。试想:

  • 我们上到第i-1级台阶时,共有d[i-1]种方法,再上一级则到达第i级台阶;
  • 我们上到第i-2级台阶时,共有d[i-2]种方法,再上两级则到达第i级台阶;

上到第i级台阶也就两种情况,从第i-1级台阶再上一级,或是从第i-2级台阶再上两级,那么我们上到第i级台阶的方法不就是 dp[i-1] + dp[i-2]。这也说明了每一级台阶的状态是由前面两级台阶决定的

  1. dp数组初始化
    dp[1] = 1;
    dp[2] = 2;

因为第0级台阶不存在,所以我们不必纠结dp[0]的值到底如何初始化。

  1. 确定遍历顺序
    因为dp[i]是由它的前两个数决定,所以我们只能从前往后去遍历。

  2. 举例推导dp数组
    例如当n=5
    dp[1]=1;
    dp[2]=2;
    dp[3] = dp[2] + dp[1] = 3;
    dp[4] = dp[3] + dp[2] = 5;
    dp[5] = dp[4] + dp[3] = 8;

动态规划的cpp代码:

class Solution {
public:int climbStairs(int n) {if(n < 3) return n;// 确定dp数组以及下标含义vector<int> dp(n+1); //dp[i]是到达第i阶楼梯的方法总数// 初始化dp[1] = 1;dp[2] = 2;// 推导for(int i = 3; i <= n; i++){dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};

这篇关于【动态规划算法题记录】70. 爬楼梯——递归/动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058026

相关文章

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n