【动态规划算法题记录】70. 爬楼梯——递归/动态规划

2024-06-13 18:04

本文主要是介绍【动态规划算法题记录】70. 爬楼梯——递归/动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

题目分析

递归法(超出时间限制)

在这里插入图片描述

  1. 递归参数与返回值
    void reversal(int i, int k)
    每次我们处理第i个台阶到第k个台阶之间的可能性。这里我把结果int cnt放在类成员中了,所以直接在函数中进行处理,不用返回。
  2. 递归终止条件
    当我们处理到最上面的台阶了,也就是reversal(n, n)就可以结束当前递归。
  3. 单层递归逻辑
    单层递归中,我们再将区间(i, k)细分下去:因为我们每次只能上一级或两级台阶,并且上了台阶之后才能处理更高层的范围,所以在缩小范围时,我们针对的是区间的左边。也就是:
for(int j = 1; j <= (k-i) && j <=2; j++){reversal(i+j, k);}

其中,j就是我们上台阶的可能性,它的取值要小于等于2不能超过区间的大小

最终的cpp递归代码:

class Solution {
private:int cnt;
public:void reversal(int i, int k){    // 在第i个台阶到第k个台阶之间做决策// 递归终止条件:已经到最上面的台阶,cnt加一并返回if(i == k){cnt++;return;}// 单层递归:从第i个台阶到第k个台阶的可能性// j在这里代表是上几个台阶for(int j = 1; j <= (k-i) && j <=2; j++){reversal(i+j, k);}}int climbStairs(int n) {cnt = 0;reversal(0, n);return cnt;}
};

动态规划

  1. 确定dp数组以及下标的含义
    dp[i]:爬到第i级台阶的方法数量。

  2. 确定递推公式
    dp[i] = dp[i-1] + dp[i-2]

因为我们只有两种上楼梯的方法,也即上一级台阶或两级台阶。试想:

  • 我们上到第i-1级台阶时,共有d[i-1]种方法,再上一级则到达第i级台阶;
  • 我们上到第i-2级台阶时,共有d[i-2]种方法,再上两级则到达第i级台阶;

上到第i级台阶也就两种情况,从第i-1级台阶再上一级,或是从第i-2级台阶再上两级,那么我们上到第i级台阶的方法不就是 dp[i-1] + dp[i-2]。这也说明了每一级台阶的状态是由前面两级台阶决定的

  1. dp数组初始化
    dp[1] = 1;
    dp[2] = 2;

因为第0级台阶不存在,所以我们不必纠结dp[0]的值到底如何初始化。

  1. 确定遍历顺序
    因为dp[i]是由它的前两个数决定,所以我们只能从前往后去遍历。

  2. 举例推导dp数组
    例如当n=5
    dp[1]=1;
    dp[2]=2;
    dp[3] = dp[2] + dp[1] = 3;
    dp[4] = dp[3] + dp[2] = 5;
    dp[5] = dp[4] + dp[3] = 8;

动态规划的cpp代码:

class Solution {
public:int climbStairs(int n) {if(n < 3) return n;// 确定dp数组以及下标含义vector<int> dp(n+1); //dp[i]是到达第i阶楼梯的方法总数// 初始化dp[1] = 1;dp[2] = 2;// 推导for(int i = 3; i <= n; i++){dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};

这篇关于【动态规划算法题记录】70. 爬楼梯——递归/动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058026

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.