深度学习:使用argparse 模块

2024-06-13 14:20

本文主要是介绍深度学习:使用argparse 模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       在深度学习中,结合 Bash 脚本和 argparse 模块,可以实现高效的任务自动化和参数管理。Bash 脚本可以用来调度任务和管理环境,而 argparse 模块可以用来解析命令行参数控制深度学习模型的训练和评估过程。

1.argparse 模块

argparse 模块是 Python 标准库中的一个模块,用于解析命令行参数它可以帮助开发者轻松地编写用户友好的命令行接口,使得程序可以通过命令行参数来接受用户输入,并根据这些输入执行相应的功能。

argparse 模块的主要功能

  1. 定义命令行参数:可以定义位置参数和可选参数,以及它们的类型、默认值和帮助信息。
  2. 解析命令行参数:自动解析命令行输入,并将其转换为相应的数据类型。
  3. 生成帮助和使用信息:自动生成帮助信息,用户可以通过 -h--help 选项查看。

使用 argparse 模块的步骤

  1. 创建 ArgumentParser 对象:这是解析器的核心对象。
  2. 添加参数:使用 add_argument 方法添加命令行参数。
  3. 解析参数:使用 parse_args 方法解析命令行输入。
  4. 使用参数:解析后的参数可以作为属性访问并在程序中使用。

示例代码

下面是一个使用 argparse 模块的基本示例:

import argparsedef main():# 创建 ArgumentParser 对象parser = argparse.ArgumentParser(description='这是一个示例程序')# 添加参数parser.add_argument('filename', type=str, help='文件的名称')parser.add_argument('--verbose', '-v', action='store_true', help='输出详细信息')parser.add_argument('--count', '-c', type=int, default=1, help='重复次数')# 解析参数args = parser.parse_args()# 使用参数if args.verbose:print(f'Processing file: {args.filename}')print(f'Repeat count: {args.count}')# 模拟处理文件for i in range(args.count):print(f'Processing {args.filename} - iteration {i + 1}')if __name__ == '__main__':main()

运行命令:

python script.py example.txt -v -c 3

输出示例:

Processing file: example.txt
Repeat count: 3
Processing example.txt - iteration 1
Processing example.txt - iteration 2
Processing example.txt - iteration 3

参数类型

  • 位置参数:必须提供,按位置传递。例如,上面的 filename
  • 可选参数:不必须提供,通常以 --- 开头,例如 --verbose--count

处理布尔选项

布尔选项通常使用 action='store_true'action='store_false'

parser.add_argument('--verbose', '-v', action='store_true', help='输出详细信息')

设置默认值

可以使用 default 参数来设置默认值:

parser.add_argument('--count', '-c', type=int, default=1, help='重复次数')

帮助信息

argparse 会自动生成帮助信息。用户可以使用 -h--help 选项来查看:

python script.py -h

输出:

usage: script.py [-h] [--verbose] [--count COUNT] filename这是一个示例程序positional arguments:filename            文件的名称optional arguments:-h, --help          show this help message and exit--verbose, -v       输出详细信息--count COUNT, -c   重复次数

子命令

通过 add_subparsers 方法,可以轻松地处理子命令:

import argparsedef main():parser = argparse.ArgumentParser(description='带有子命令的示例程序')# 添加子命令解析器subparsers = parser.add_subparsers(dest='command', help='子命令')# 添加子命令 'foo'parser_foo = subparsers.add_parser('foo', help='foo 子命令的帮助信息')parser_foo.add_argument('--bar', type=int, required=True, help='bar 参数')# 添加子命令 'baz'parser_baz = subparsers.add_parser('baz', help='baz 子命令的帮助信息')parser_baz.add_argument('--qux', type=str, help='qux 参数')# 解析参数args = parser.parse_args()# 处理子命令if args.command == 'foo':print(f'执行 foo 子命令,bar 参数值为 {args.bar}')elif args.command == 'baz':print(f'执行 baz 子命令,qux 参数值为 {args.qux}')else:parser.print_help()if __name__ == '__main__':main()

运行命令:

python script.py foo --bar 123
python script.py baz --qux hello

输出示例:

执行 foo 子命令,bar 参数值为 123
执行 baz 子命令,qux 参数值为 hello

总结

argparse 模块是一个强大的工具,用于解析命令行参数,提供了丰富的功能来处理不同类型的参数和选项,使得命令行工具的开发更加简便和灵活。通过定义和解析参数,开发者可以方便地从命令行获取用户输入,并在程序中使用这些输入来执行相应的操作。

2. 使用argparse 模块 

python3 utils/create_indexes.py create_indexes \--waveforms_hdf5_path=$WORKSPACE"/hdf5s/waveforms/eval.h5" \--indexes_hdf5_path=$WORKSPACE"/hdf5s/indexes/eval.h5

这段代码使用 argparse 模块解析命令行参数,并执行指定的操作。具体来说,代码的作用是调用一个 Python 脚本 create_indexes.py,执行 create_indexes 子命令,并传递两个参数:waveforms_hdf5_pathindexes_hdf5_path。下面详细分析这段代码的各个部分。

代码拆解和分析

1. 调用 Python 脚本
 
python3 utils/create_indexes.py create_indexes
2. 传递命令行参数
--waveforms_hdf5_path=$WORKSPACE"/hdf5s/waveforms/eval.h5" \
--indexes_hdf5_path=$WORKSPACE"/hdf5s/indexes/eval.h5"

这部分代码传递了两个命令行参数:

  • --waveforms_hdf5_path:指定包含波形数据的 HDF5 文件路径。
  • --indexes_hdf5_path:指定要生成的索引 HDF5 文件路径。

这两个路径是基于环境变量 WORKSPACE 构建的,$WORKSPACE 变量表示工作空间的路径。

环境变量和路径拼接

假设 WORKSPACE 变量的值为 "/home/user/project",则上述路径在运行时会被解析为:

  • --waveforms_hdf5_path="/home/user/project/hdf5s/waveforms/eval.h5"
  • --indexes_hdf5_path="/home/user/project/hdf5s/indexes/eval.h5"

create_indexes.py 脚本的实现

为了更好地理解这段代码,我们需要假设 create_indexes.py 的部分实现。通常,这个脚本会使用 argparse 模块解析命令行参数,并根据参数调用相应的函数。

示例的 create_indexes.py 实现
import argparsedef create_indexes(args):waveforms_hdf5_path = args.waveforms_hdf5_pathindexes_hdf5_path = args.indexes_hdf5_path# 假设有一个函数 load_waveforms 用于加载波形数据waveforms = load_waveforms(waveforms_hdf5_path)# 假设有一个函数 create_and_save_indexes 用于创建索引并保存到 HDF5 文件create_and_save_indexes(waveforms, indexes_hdf5_path)def load_waveforms(path):# 从 HDF5 文件中加载波形数据的示例实现import h5pywith h5py.File(path, 'r') as f:waveforms = f['waveforms'][:]return waveformsdef create_and_save_indexes(waveforms, path):# 创建索引并保存到 HDF5 文件的示例实现import h5pyindexes = generate_indexes(waveforms)  # 生成索引的示例函数with h5py.File(path, 'w') as f:f.create_dataset('indexes', data=indexes)def generate_indexes(waveforms):# 假设生成索引的示例实现indexes = [i for i in range(len(waveforms))]return indexesif __name__ == '__main__':parser = argparse.ArgumentParser(description='创建索引')subparsers = parser.add_subparsers(dest='mode')parser_create_indexes = subparsers.add_parser('create_indexes')parser_create_indexes.add_argument('--waveforms_hdf5_path', type=str, required=True, help='波形数据 HDF5 文件的路径')parser_create_indexes.add_argument('--indexes_hdf5_path', type=str, required=True, help='索引 HDF5 文件的路径')args = parser.parse_args()if args.mode == 'create_indexes':create_indexes(args)else:raise ValueError('不支持的子命令')

运行代码时的过程

  1. 执行命令行:执行命令行 python3 utils/create_indexes.py create_indexes --waveforms_hdf5_path="/home/user/project/hdf5s/waveforms/eval.h5" --indexes_hdf5_path="/home/user/project/hdf5s/indexes/eval.h5"

  2. 解析参数argparse 模块解析命令行参数,将 waveforms_hdf5_pathindexes_hdf5_path 的值存储在 args 对象中。

  3. 调用函数:根据子命令 create_indexes,调用 create_indexes(args) 函数。

  4. 加载波形数据:在 create_indexes 函数中,调用 load_waveforms 函数从指定的 HDF5 文件中加载波形数据。

  5. 创建并保存索引:调用 create_and_save_indexes 函数,根据波形数据生成索引,并将索引保存到指定的 HDF5 文件中。

总结

这段代码展示了如何使用 argparse 模块解析命令行参数并执行特定操作。通过结合命令行参数和脚本逻辑,可以方便地实现复杂的任务自动化流程。上述示例详细解释了命令行参数的传递和处理方式,有助于更好地理解和使用 argparse 模块。

这篇关于深度学习:使用argparse 模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057549

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali