PyTorch 统计属性-Tensor基本操作

2024-06-13 11:44

本文主要是介绍PyTorch 统计属性-Tensor基本操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 最小 min, 最大 max, 均值 mean,累加 sum,累乘 prod …

    >>> a = torch.arange(0,8).view(2,4).float()
    >>> a
    tensor([[0., 1., 2., 3.],[4., 5., 6., 7.]])>>> a.min()  	## 最小值:tensor(0.)
    >>> a.max()  	## 最大值:tensor(7.)>>> a.argmin()	## 最小值对应的 idx: tensor(0)
    >>> a.argmax()	## 最大值对应的 idx: tensor(7)>>> a.argmin(dim=1)	## 每行 dim=1 最小值对应的 idx: tensor([0, 0])  每行都是最前面的数最小
    >>> a.argmax(dim=1)	## 每行 dim=1 最大值对应的 idx: tensor([3, 3])  每行都是最后面的数最大>>> a.argmin(dim=1, keepdim=True)  ## 加 keepdim 可以保持原 a 维度
    tensor([[0],[0]])
    >>> a.argmax(dim=1, keepdim=True)  ## 加 keepdim 可以保持原 a 维度
    tensor([[3],[3]])>>> a.topk(3, dim=1)  ## k 大的 value 和对应的 idx
    torch.return_types.topk(
    values=tensor([[3., 2., 1.],[7., 6., 5.]]),
    indices=tensor([[3, 2, 1],[3, 2, 1]]))
    >>> a.topk(3, dim=1, largest=False)   ## k 小的:largest=False
    torch.return_types.topk(
    values=tensor([[0., 1., 2.],[4., 5., 6.]]),
    indices=tensor([[0, 1, 2],[0, 1, 2]]))>>> a.mean()  	## 平均值:tensor(3.5000)
    >>> a.sum()		## 累加值:tensor(28.)
    >>> a.prod()	## 累乘值:tensor(0.)
    
  • norm 范数,非 normalization 不是一个概念

    >>> a = torch.full([1], 8)  # tensor([1, 1, 1, 1, 1, 1, 1, 1])     
    >>> a.float().norm(1)  		#: tensor(8.)
    >>> a.float().norm(2)  		#: tensor(2.8284)>>> b = a.view(2,4) 		# tensor([[1, 1, 1, 1], [1, 1, 1, 1]])
    >>> b.float().norm(1)  		#: tensor(8.)	
    >>> a.float().norm(2)  		#: tensor(2.8284)>>> b.float().norm(1, dim=0)  # 指定 dim:0
    tensor([2., 2., 2., 2.])
    >>> b.float().norm(1, dim=1)  # 指定 dim: 1
    tensor([4., 4.])
    
    • .norm() 时可能出现的 RuntimeError 解决方案:加 .float() -> a.float.norm()
      >>> a.norm()
      Traceback (most recent call last):File "<stdin>", line 1, in <module>File "D:\Tutu.Python\lib\site-packages\torch\tensor.py", line 389, in normreturn torch.norm(self, p, dim, keepdim, dtype=dtype)File "D:\Tutu.Python\lib\site-packages\torch\functional.py", line 1290, in normreturn _VF.frobenius_norm(input, dim=(), keepdim=keepdim)  # type: ignore
      RuntimeError: Can only calculate the mean of floating types. Got Long instead.
      

  • B站视频参考资料

这篇关于PyTorch 统计属性-Tensor基本操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057210

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

浅析CSS 中z - index属性的作用及在什么情况下会失效

《浅析CSS中z-index属性的作用及在什么情况下会失效》z-index属性用于控制元素的堆叠顺序,值越大,元素越显示在上层,它需要元素具有定位属性(如relative、absolute、fi... 目录1. z-index 属性的作用2. z-index 失效的情况2.1 元素没有定位属性2.2 元素处