人工蜂群算法求解TSP问题

2024-06-13 10:08

本文主要是介绍人工蜂群算法求解TSP问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工蜂群算法求解TSP问题

【标签】 ABC TSP Matlab

data:2018-10-19 author:怡宝2号

【总起】利用人工蜂群算法(Artificial Bee Colony Algorithm, 简称ABC算法)求解TSP问题,语言:matlab

1. 算法简介

人工蜂群算法(Artificial Bee Colony Algorithm, 简称ABC算法)是一个由蜂群行为启发的算法,在2005年由Karaboga小组为优化代数问题而提出。其主要是为了解决多变量函数优化问题。

2. 算法原理

标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。整个蜂群的目标是寻找花蜜量最大的蜜源。在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。所以算法总体分为3个部分。
假设问题的解空间是D维的,采蜜蜂与观察蜂的个数都是S,采蜜蜂的个数或观察蜂的个数与蜜源的数量相等。则标准的ABC算法将优化问题的求解过程看成是在D维搜索空间中进行搜索。每个蜜源的位置代表问题的一个可能解,蜜源的花蜜量对应于相应的解的适应度。一个采蜜蜂与一个蜜源是相对应的。与第i个蜜源相对应的采蜜蜂依据如下公式寻找新的蜜源:
在这里插入图片描述
其中,i=1,2,···,S,表示蜜源、采蜜蜂、观察蜂的个数,D=1,2,···,D,表示优化变量的个数。Φid为[-1,1]之间的随机数,k≠i。
将新生成的可能解{Xi1’,Xi2’,···,XiD’}与原来的解{Xi1,Xi2,···,XiD}做比较,采用贪婪选择策略保留较好的解。
在这里插入图片描述
对每个采蜜蜂按上式对每个采蜜蜂计算一个概率。观察蜂以上面计算的概率接受采蜜蜂,并利用采蜜蜂更新的公式进行更新,再进行贪婪选择。
当所有的采蜜蜂和观察蜂都搜索完整个搜索空间时,如果一个蜜源的适应值在给定的步骤内(定义为控制参数“limit”) 没有被提高, 则丢弃该蜜源,而与该蜜源相对应的采蜜蜂变成侦查蜂,侦查蜂通过已下公式搜索新的可能解。
在这里插入图片描述
[xdmin]: https://img-blog.csdn.net/201810191750084?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTE2MjIyMDg=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70
其中,r是[0,1]的随机数,xmin和xmax是第d个变量空间的下界和上界。

3. 模型

TSP问题,就是从一个点出发,再回到出发点,要求整个的最短路线。具体数学公式如下:
在这里插入图片描述
在这里插入图片描述

4. 总结

  • 人工蜂群算法主要分:采蜜、观察、侦察三个阶段;
  • 整个原理和遗传算法的原理很类似,采蜜蜂就相当于初始化父代chrom,观察蜂相当于轮盘赌选择之后的子代,侦察蜂就是在limit次中没能找到更优秀的解时,舍弃该解,再随机初始化。

5. 程序和结果

% 人工蜂群算法求解TSP问题
% 参数:
% 输出:
% 
% 有问题详咨询:778961303@qq.com
% (有偿代写程序)close allclc
% 人工蜂群算法求解TSP问题
% 参数:
% 输出:
% 
% 有问题详咨询:778961303@qq.com(有偿代写程序)close all
clc
%% 参数初始化
parameter = initial();%% 画初始路径图
initialDraw(parameter);runtime=10;        %通过修改runtime的值,改变程序的运行次数,用以算法的健壮性
GlobalMins=zeros(1,runtime);
for r=1:runtime%初始化种群
%     for i =1:FoodNumberFoods = initial(runtime,NC);
%     end
%计算适应度函数值for i=1:FoodNumberroute=Foods(i,:);Fitness(i)=calculateFitness1(route);end%% 初始化搜索次数,用于和Limit比较trial=zeros(1,FoodNumber);%找出适应度函数值的最小值BestInd=find(Fitness==min(Fitness));BestInd=BestInd(end);       %避免有两个相同的位置,只取其一GlobalMin=Fitness(BestInd);GlobalParams=Foods(BestInd,:);%迭代开始iter=1;     %初始化迭代次数j=1;        %用以初始化结果while((iter<=maxCycle))%%%%%% 采蜜蜂模式 %%%%%%for i=1:FoodNumber%计算新蜜源的适应度函数值FitnessSol=calculateFitness1(route_next);%使用贪婪准则,寻找最优蜜源if (FitnessSol<Fitness(i)) %若找到更好的蜜源,搜索次数清零Foods(i,:)=route_next;Fitness(i)=FitnessSol;trial(i)=0;elsetrial(i)=trial(i)+1;  %超过设定的Limit次,则该蜂成为侦察蜂end;end;%%%%%% 根据适应度值计算彩蜜蜂被跟随的概率 %%%%%%prob=(0.9.*Fitness./max(Fitness))+0.1;%%%%%% 观察蜂 %%%%%%i=1;      %要跟随的采蜜蜂t=0;      %标记观察蜂while(t<FoodNumber)if (rand<prob(i))   %按概率选择要跟随的采蜜蜂t=t+1;%计算新蜜源的适应度函数值FitnessSol=calculateFitness1(route_next);%使用贪婪准则,寻找最优蜜源if (FitnessSol<Fitness(i))%若找到更好的蜜源,搜索次数清零Foods(i,:)=route_next;Fitness(i)=FitnessSol;trial(i)=0;elsetrial(i)=trial(i)+1;%超过设定的Limit次,则该蜂成为侦察蜂endendi=i+1;                      %要跟随的下一个采蜜蜂if (i==(FoodNumber)+1)i=1;endend% 记录此时更好的解ind=find(Fitness==min(Fitness));ind=ind(end);if (Fitness(ind)<GlobalMin)GlobalMin=Fitness(ind);GlobalParams=Foods(ind,:);end%%%%%% 侦查蜂模式 %%%%%%ind=find(trial==max(trial));ind=ind(end);if (trial(ind)>Limit)   %若搜索次数超过极限值,则进行随机搜索产生新解FitnessSol=calculateFitness1(route_new);Foods(ind,:)=route_new;Fitness(ind)=FitnessSol;end%%%%%% 建立一个次数和最优的矩阵,以便于画图 %%%%%%Cishu(j)=iter;          %迭代次数行向量zuiyou(j)=GlobalMin;    %每次迭代得到的最优解j=j+1;iter=iter+1;end % while(iter<=maxClcle)GlobalMins(r)=GlobalMin;    %程序运行完一次,记录这次的最优路径长度disp(['第',num2str(r),'次运行得到的最优路径是:',num2str(GlobalParams),',此条路径的长度是:',num2str(GlobalMins(r))])
end %end of runs
%%%%%% 画曲线图 %%%%%%
figure(2);
plot(Cishu,zuiyou,'b');
%title('优化曲线');
xlabel('迭代次数');
ylabel('路径长度');
figure(3);%%画出优化路径图
finalDraw(GlobalMin, parameter)

结果:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这篇关于人工蜂群算法求解TSP问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057000

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access