人工蜂群算法求解货位优化问题

2024-06-13 09:58

本文主要是介绍人工蜂群算法求解货位优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人工蜂群算法求解货位优化问题

【标签】 ABC TSP Matlab

data:2018-10-19 author:怡宝2号

【总起】利用人工蜂群算法(Artificial Bee Colony Algorithm, 简称ABC算法)求解TSP问题,语言:matlab

1. 算法简介

人工蜂群算法(Artificial Bee Colony Algorithm, 简称ABC算法)是一个由蜂群行为启发的算法,在2005年由Karaboga小组为优化代数问题而提出。其主要是为了解决多变量函数优化问题。

2. 算法原理

标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。整个蜂群的目标是寻找花蜜量最大的蜜源。在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。所以算法总体分为3个部分。
假设问题的解空间是D维的,采蜜蜂与观察蜂的个数都是S,采蜜蜂的个数或观察蜂的个数与蜜源的数量相等。则标准的ABC算法将优化问题的求解过程看成是在D维搜索空间中进行搜索。每个蜜源的位置代表问题的一个可能解,蜜源的花蜜量对应于相应的解的适应度。一个采蜜蜂与一个蜜源是相对应的。与第i个蜜源相对应的采蜜蜂依据如下公式寻找新的蜜源:
在这里插入图片描述
其中,i=1,2,···,S,表示蜜源、采蜜蜂、观察蜂的个数,D=1,2,···,D,表示优化变量的个数。Φid为[-1,1]之间的随机数,k≠i。
将新生成的可能解{Xi1’,Xi2’,···,XiD’}与原来的解{Xi1,Xi2,···,XiD}做比较,采用贪婪选择策略保留较好的解。
在这里插入图片描述
对每个采蜜蜂按上式对每个采蜜蜂计算一个概率。观察蜂以上面计算的概率接受采蜜蜂,并利用采蜜蜂更新的公式进行更新,再进行贪婪选择。
当所有的采蜜蜂和观察蜂都搜索完整个搜索空间时,如果一个蜜源的适应值在给定的步骤内(定义为控制参数“limit”) 没有被提高, 则丢弃该蜜源,而与该蜜源相对应的采蜜蜂变成侦查蜂,侦查蜂通过已下公式搜索新的可能解。
在这里插入图片描述
其中,r是[0,1]的随机数,xmin和xmax是第d个变量空间的下界和上界。

3. 模型

3.1 模型假设
根据已知条件,可作出以下假设:
(1)立体货架模型被定义为一个标准的长方体的点集合(x,y,z),以理想模型进行考虑,并将(0,0,0)作为出口坐标;
(2)商品有销售记录;
(3)堆垛机按直线运行;
(4)只考虑商品出库;
(5)堆垛机取货时间不计,只考虑堆垛机的运行速度;
(6)每个巷道只有一个堆垛机;
(7)货物体积完全相同,质量不同;
(8)货架长宽高均为1m,货物体积均为1m3。

3.2 符号规定
在这里插入图片描述

货位优化的多目标数学模型是建立以出库效率作为主要目标,货架稳定性作为次要目标的基础上。如下所示:
在这里插入图片描述

4. 总结

  • 人工蜂群算法主要分:采蜜、观察、侦察三个阶段;
  • 整个原理和遗传算法的原理很类似,采蜜蜂就相当于初始化父代chrom,观察蜂相当于轮盘赌选择之后的子代,侦察蜂就是在limit次中没能找到更优秀的解时,舍弃该解,再随机初始化。

5. 程序和结果

%     Author:    怡宝2号        博士猿工作室
%     淘宝链接: https://shop437222340.taobao.com/index.htm?spm=2013.1.w5002-16262391244.6.733e1fb4LF2f58%     Use:       基于人工蜂群算法的三维货位优化/基于坐标点的编码方式
%                输入变量(可修改量):     TurnOver:每个货物的周转率
%                                         Weight:每个货物的重量
%                                         runtime:运行的次数
%                                         numgoods:货物的个数
%                              
%                输出:                   res:最优结果记录
%     Remark:   本人qq:778961303,如有疑问请咨询clc;clear all;close all;format compact% 参数初始化
[parameter] = initialtwo();% 画出初始货位位置
initialDraw(parameter);% 所有空货位的集合
[CHROM] = TotalGoods(parameter.X, parameter.Y, parameter.Z);for r = 1:parameter.runtime% 随机生成初始种群for i=1:parameter.foodnumbertemp = randperm(parameter.totaltray);Foods(i,:) = temp;end% 计算目标函数和种群适应度[ Fitness, fitval] = calculatefitness(Foods, parameter, CHROM);% 初始化搜索次数,用于和Limit比较trial=zeros(1,parameter.foodnumber);%找出适应度函数值的最小值BestInd=find(Fitness==min(Fitness));BestInd=BestInd(end);       %避免有两个相同的位置,只取其一GlobalMin=Fitness(BestInd);GlobalParams=Foods(BestInd,:);%迭代开始iter=1;     %初始化迭代次数while((iter <= parameter.maxCycle))%% 采蜜蜂for i=1:parameter.foodnumber%计算新蜜源的适应度函数值[FitnessSol, ~]=calculatefitness(Sol, parameter, CHROM);%使用贪婪准则,寻找最优蜜源if (FitnessSol<Fitness(i)) %若找到更好的蜜源,搜索次数清零Foods(i,:)=Sol;Fitness(i)=FitnessSol;trial(i)=0;elsetrial(i)=trial(i)+1;  %不能找到更优解超过设定的Limit次,则该蜂成为侦察蜂/重新初始化endend%计算采蜜蜂被选出的概率prob=(0.9.*Fitness./max(Fitness))+0.1;%% 观察蜂i=1;      %要跟随的采蜜蜂t=0;      %标记观察蜂while(t<parameter.foodnumber)if (rand<prob(i))   %按概率选择要跟随的采蜜蜂t=t+1;%计算新蜜源的适应度函数值[FitnessSol, ~]=calculatefitness(Sol, parameter, CHROM);%使用贪婪准则,保留优秀的蜜蜂if (FitnessSol<Fitness(i))		%若找到更好的蜜源,搜索次数清零Foods(i,:)=Sol;Fitness(i)=FitnessSol;trial(i)=0;elsetrial(i)=trial(i)+1;		%超过设定的Limit次,则该蜂成为侦察蜂//重新初始化endendi=i+1;                      		%要跟随的下一个采蜜蜂if (i==(parameter.foodnumber)+1)i=1;endend% 记录最优解ind=find(Fitness==min(Fitness));ind=ind(end);if (Fitness(ind)<GlobalMin)GlobalMin=Fitness(ind);GlobalParams=Foods(ind,:);end%% 侦查蜂ind=find(trial==max(trial));ind=ind(end);if (trial(ind) > parameter.Limit)   %若搜索次数超过极限值,则进行随机搜索产生新解end%%记录每代的最优解trace(iter) = GlobalMin;	% 最小值bestABC(iter,:) = GlobalParams;		% 最优参数iter=iter+1;endres{r}.min = GlobalMin;res{r}.trace = trace;res{r}.param = GlobalParams;disp(['第',num2str(r),'次运行得到的参数为:',num2str(GlobalParams(1:parameter.numgoods) ),',此参数对应的目标函数最小值为:',num2str(GlobalMin)])endminnumber = res{1}.min;
index = 1;
for i=2:parameter.runtimeif minnumber > res{i}.minminnumber = res{i}.min;index = iendend
%% 画出迭代图
figure(2);
plot(res{index}.trace,'b');
xlabel('迭代次数');
ylabel('目标值');%% 画出优化后的货位分配情况图
%解码染色体
result = res{index}.param(1:parameter.numgoods);
p = [];
for i=1:length(result)p = [p CHROM(result(i),:)];coordinate(i,:) = CHROM(result(i),:);
end
% disp(['优化前目标函数为:',num2str(max(trace))]);
disp(['优化后目标函数为:',num2str(res{index}.min)]);
disp(['优化后货物分配的货位为:',num2str(p)]);
coordinatefigure()
%%画出优化后的货位分配
finalDraw(coordinate, parameter);

结果:
在这里插入图片描述

这篇关于人工蜂群算法求解货位优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056976

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx