图像处理之双边滤波效果(Bilateral Filtering for Gray and Color Image)

本文主要是介绍图像处理之双边滤波效果(Bilateral Filtering for Gray and Color Image),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

- created by gloomyfish

图像处理之双边滤波效果(Bilateral Filtering for Gray and Color Image)

基本介绍:

普通的时空域的低通滤波器,在像素空间完成滤波以后,导致图像的边缘部分也变得不那么明显,

整张图像都变得同样的模糊,图像边缘细节丢失。双边滤波器(ABilateral Filter)可以很好的保

留边缘的同时消除噪声。双边滤波器能做到这些原因在于它不像普通的高斯/卷积低通滤波,只考

虑了位置对中心像素的影响,它还考虑了卷积核中像素与中心像素之间相似程度的影响,根据位置

影响与像素值之间的相似程度生成两个不同的权重表(WeightTable),在计算中心像素的时候加以

考虑这两个权重,从而实现双边低通滤波。据说AdobePhotoshop的高斯磨皮功能就是应用了

双边低通滤波算法实现。






程序效果:


看我们的美女lena应用双边滤镜之后



程序关键代码解释:

建立距离高斯权重表(Weight Table)如下:

private void buildDistanceWeightTable() {  int size = 2 * radius + 1;  cWeightTable = new double[size][size];  for(int semirow = -radius; semirow <= radius; semirow++) {  for(int semicol = - radius; semicol <= radius; semicol++) {  // calculate Euclidean distance between center point and close pixels  double delta = Math.sqrt(semirow * semirow + semicol * semicol)/ds;  double deltaDelta = delta * delta;  cWeightTable[semirow+radius][semicol+radius] = Math.exp(deltaDelta * factor);  }  }  
}  




程序效果:


看我们的美女lena应用双边滤镜之后



程序关键代码解释:

建立距离高斯权重表(Weight Table)如下:


建立RGB值像素度高斯权重代码如下:
private void buildSimilarityWeightTable() {  sWeightTable = new double[256]; // since the color scope is 0 ~ 255  for(int i=0; i<256; i++) {  double delta = Math.sqrt(i * i ) / rs;  double deltaDelta = delta * delta;  sWeightTable[i] = Math.exp(deltaDelta * factor);  }  
}  




程序效果:


看我们的美女lena应用双边滤镜之后



程序关键代码解释:

建立距离高斯权重表(Weight Table)如下:

private void buildDistanceWeightTable() {  int size = 2 * radius + 1;  cWeightTable = new double[size][size];  for(int semirow = -radius; semirow <= radius; semirow++) {  for(int semicol = - radius; semicol <= radius; semicol++) {  // calculate Euclidean distance between center point and close pixels  double delta = Math.sqrt(semirow * semirow + semicol * semicol)/ds;  double deltaDelta = delta * delta;  cWeightTable[semirow+radius][semicol+radius] = Math.exp(deltaDelta * factor);  }  }  
}  

完成权重和计算与像素×权重和计算代码如下

for(int semirow = -radius; semirow <= radius; semirow++) {  for(int semicol = - radius; semicol <= radius; semicol++) {  if((row + semirow) >= 0 && (row + semirow) < height) {  rowOffset = row + semirow;  } else {  rowOffset = 0;  }  if((semicol + col) >= 0 && (semicol + col) < width) {  colOffset = col + semicol;  } else {  colOffset = 0;  }  index2 = rowOffset * width + colOffset;  ta2 = (inPixels[index2] >> 24) & 0xff;  tr2 = (inPixels[index2] >> 16) & 0xff;  tg2 = (inPixels[index2] >> 8) & 0xff;  tb2 = inPixels[index2] & 0xff;  csRedWeight = cWeightTable[semirow+radius][semicol+radius]  * sWeightTable[(Math.abs(tr2 - tr))];  csGreenWeight = cWeightTable[semirow+radius][semicol+radius]  * sWeightTable[(Math.abs(tg2 - tg))];  csBlueWeight = cWeightTable[semirow+radius][semicol+radius]  * sWeightTable[(Math.abs(tb2 - tb))];  csSumRedWeight += csRedWeight;  csSumGreenWeight += csGreenWeight;  csSumBlueWeight += csBlueWeight;  redSum += (csRedWeight * (double)tr2);  greenSum += (csGreenWeight * (double)tg2);  blueSum += (csBlueWeight * (double)tb2);  }  
}  

完成归一化,得到输出像素点RGB值得代码如下:

tr = (int)Math.floor(redSum / csSumRedWeight);  
tg = (int)Math.floor(greenSum / csSumGreenWeight);  
tb = (int)Math.floor(blueSum / csSumBlueWeight);  
outPixels[index] = (ta << 24) | (clamp(tr) << 16) | (clamp(tg) << 8) | clamp(tb);  

关于什么卷积滤波,请参考:

http://blog.csdn.net/jia20003/article/details/7038938

关于高斯模糊算法,请参考:
http://blog.csdn.net/jia20003/article/details/7234741


最后想说,不给出源代码的博文不是好博文,基于Java完成的双边滤波速度有点慢

可以自己优化,双边滤镜完全源代码如下:

package com.gloomyfish.blurring.study;  
/** *  A simple and important case of bilateral filtering is shift-invariant Gaussian filtering *  refer to - http://graphics.ucsd.edu/~iman/Denoising/ *  refer to - http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html *  thanks to cyber */  
import java.awt.image.BufferedImage;  public class BilateralFilter extends AbstractBufferedImageOp {  private final static double factor = -0.5d;  private double ds; // distance sigma  private double rs; // range sigma  private int radius; // half length of Gaussian kernel Adobe Photoshop   private double[][] cWeightTable;  private double[] sWeightTable;  private int width;  private int height;  public BilateralFilter() {  this.ds = 1.0f;  this.rs = 1.0f;  }  private void buildDistanceWeightTable() {  int size = 2 * radius + 1;  cWeightTable = new double[size][size];  for(int semirow = -radius; semirow <= radius; semirow++) {  for(int semicol = - radius; semicol <= radius; semicol++) {  // calculate Euclidean distance between center point and close pixels  double delta = Math.sqrt(semirow * semirow + semicol * semicol)/ds;  double deltaDelta = delta * delta;  cWeightTable[semirow+radius][semicol+radius] = Math.exp(deltaDelta * factor);  }  }  }  /** * for gray image * @param row * @param col * @param inPixels */  private void buildSimilarityWeightTable() {  sWeightTable = new double[256]; // since the color scope is 0 ~ 255  for(int i=0; i<256; i++) {  double delta = Math.sqrt(i * i ) / rs;  double deltaDelta = delta * delta;  sWeightTable[i] = Math.exp(deltaDelta * factor);  }  }  public void setDistanceSigma(double ds) {  this.ds = ds;  }  public void setRangeSigma(double rs) {  this.rs = rs;  }  @Override  public BufferedImage filter(BufferedImage src, BufferedImage dest) {  width = src.getWidth();  height = src.getHeight();  //int sigmaMax = (int)Math.max(ds, rs);  //radius = (int)Math.ceil(2 * sigmaMax);  radius = (int)Math.max(ds, rs);  buildDistanceWeightTable();  buildSimilarityWeightTable();  if ( dest == null )  dest = createCompatibleDestImage( src, null );  int[] inPixels = new int[width*height];  int[] outPixels = new int[width*height];  getRGB( src, 0, 0, width, height, inPixels );  int index = 0;  double redSum = 0, greenSum = 0, blueSum = 0;  double csRedWeight = 0, csGreenWeight = 0, csBlueWeight = 0;  double csSumRedWeight = 0, csSumGreenWeight = 0, csSumBlueWeight = 0;  for(int row=0; row<height; row++) {  int ta = 0, tr = 0, tg = 0, tb = 0;  for(int col=0; col<width; col++) {  index = row * width + col;  ta = (inPixels[index] >> 24) & 0xff;  tr = (inPixels[index] >> 16) & 0xff;  tg = (inPixels[index] >> 8) & 0xff;  tb = inPixels[index] & 0xff;  int rowOffset = 0, colOffset = 0;  int index2 = 0;  int ta2 = 0, tr2 = 0, tg2 = 0, tb2 = 0;  for(int semirow = -radius; semirow <= radius; semirow++) {  for(int semicol = - radius; semicol <= radius; semicol++) {  if((row + semirow) >= 0 && (row + semirow) < height) {  rowOffset = row + semirow;  } else {  rowOffset = 0;  }  if((semicol + col) >= 0 && (semicol + col) < width) {  colOffset = col + semicol;  } else {  colOffset = 0;  }  index2 = rowOffset * width + colOffset;  ta2 = (inPixels[index2] >> 24) & 0xff;  tr2 = (inPixels[index2] >> 16) & 0xff;  tg2 = (inPixels[index2] >> 8) & 0xff;  tb2 = inPixels[index2] & 0xff;  csRedWeight = cWeightTable[semirow+radius][semicol+radius]  * sWeightTable[(Math.abs(tr2 - tr))];  csGreenWeight = cWeightTable[semirow+radius][semicol+radius]  * sWeightTable[(Math.abs(tg2 - tg))];  csBlueWeight = cWeightTable[semirow+radius][semicol+radius]  * sWeightTable[(Math.abs(tb2 - tb))];  csSumRedWeight += csRedWeight;  csSumGreenWeight += csGreenWeight;  csSumBlueWeight += csBlueWeight;  redSum += (csRedWeight * (double)tr2);  greenSum += (csGreenWeight * (double)tg2);  blueSum += (csBlueWeight * (double)tb2);  }  }  tr = (int)Math.floor(redSum / csSumRedWeight);  tg = (int)Math.floor(greenSum / csSumGreenWeight);  tb = (int)Math.floor(blueSum / csSumBlueWeight);  outPixels[index] = (ta << 24) | (clamp(tr) << 16) | (clamp(tg) << 8) | clamp(tb);  // clean value for next time...  redSum = greenSum = blueSum = 0;  csRedWeight = csGreenWeight = csBlueWeight = 0;  csSumRedWeight = csSumGreenWeight = csSumBlueWeight = 0;  }  }  setRGB( dest, 0, 0, width, height, outPixels );  return dest;  }  public static int clamp(int p) {  return p < 0 ? 0 : ((p > 255) ? 255 : p);  }  public static void main(String[] args) {  BilateralFilter bf = new BilateralFilter();  bf.buildSimilarityWeightTable();  }  
}  



这篇关于图像处理之双边滤波效果(Bilateral Filtering for Gray and Color Image)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055563

相关文章

Kotlin Compose Button 实现长按监听并实现动画效果(完整代码)

《KotlinComposeButton实现长按监听并实现动画效果(完整代码)》想要实现长按按钮开始录音,松开发送的功能,因此为了实现这些功能就需要自己写一个Button来解决问题,下面小编给大... 目录Button 实现原理1. Surface 的作用(关键)2. InteractionSource3.

使用WPF实现窗口抖动动画效果

《使用WPF实现窗口抖动动画效果》在用户界面设计中,适当的动画反馈可以提升用户体验,尤其是在错误提示、操作失败等场景下,窗口抖动作为一种常见且直观的视觉反馈方式,常用于提醒用户注意当前状态,本文将详细... 目录前言实现思路概述核心代码实现1、 获取目标窗口2、初始化基础位置值3、创建抖动动画4、动画完成后

uniapp小程序中实现无缝衔接滚动效果代码示例

《uniapp小程序中实现无缝衔接滚动效果代码示例》:本文主要介绍uniapp小程序中实现无缝衔接滚动效果的相关资料,该方法可以实现滚动内容中字的不同的颜色更改,并且可以根据需要进行艺术化更改和自... 组件滚动通知只能实现简单的滚动效果,不能实现滚动内容中的字进行不同颜色的更改,下面实现一个无缝衔接的滚动

Java实现图片淡入淡出效果

《Java实现图片淡入淡出效果》在现代图形用户界面和游戏开发中,**图片淡入淡出(FadeIn/Out)**是一种常见且实用的视觉过渡效果,它可以用于启动画面、场景切换、轮播图、提示框弹出等场景,通过... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主