opencv图像处理之指纹验证的实现

2025-04-02 15:50

本文主要是介绍opencv图像处理之指纹验证的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学...

一、简介

在当今数字化时代,生物识别技术作为一种安全、便捷的身份验证方式js,正广泛应用于各个领域。指纹识别作为生物识别技术中的佼佼者,因其独特性和稳定性,成为了众多应用场景的首选。今天,我们就来深入探讨如何利用 OpenCV 库实现一个简单的指纹识别系统,并详细解读相关代码。

二、具体案例实现

本例是将src1和src2与模板model进行匹配的一个代码实现

opencv图像处理之指纹验证的实现

具体代码如下

import cv2
def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
def verification(src, model):
    # 创建SIFT特征提取器
    sift = cv2.SIFT_create()
    # 检测关键点和计算描述符(特征向量) 源图像
    kp1, des1 = sift.detectAndCompute(src, None)     # 第二个参数:掩膜
    # 检测关键点和计算描述符 模板图像
    kp2, des2 = sift.detectAndCompute(model, None)
    # 创建FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    # 使用k近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)
    matches = flann.knnMatch(des1, des2, k=2)
# distance:匹配的特征点描述符的欧式距离,数值越小也就说明俩个特征点越相近。
# queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下标。
# trainIdx:样本图像的特征点描述符下标, 同时也是描述符对应特征点的下标。
    # 进行比较筛选
    ok = []
    for m, n in matches:#m是最接近点的匹配结果,n是次接近点的匹配结果
        # 根据Lowe's比率测试,选择最佳匹配
        if m.distance < 0.8 * n.distance:
            ok.append(m)
    # 统计通过筛选的匹配数量
    num = len(ok)
    if num >= 500:
        result = 编程"认证通过"
    else:
        result = "认证失败"
    return result
if __name__ == "__main__":
    src1 = cv2.imread("src1.BMP")
    cv_show('src1', src1)
    src2 = cv2.imread("src2.BMP")
    cv_show('src2', src2)
    model = cv2.imread("model.BMP")
    cv_show('model', model)
    result1= verification(src1, model)
    result2= verification(src2, model)
    print("src1验证结果为:", result1)
    print("src2验证结果为:", result2)

1. 图像显示函数

def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)

这个函数的作用是使用 OpenCV 的imshow函数显示图像,并通过waitKey(0)等待用户按下任意键后关闭图像窗口。name参数是窗口的名称,img参数是要显示的图像数据

2. 指纹验证函数

def verification(src, model):
    # 创建SIFT特征提取器
    sift = cv2.SIFT_create()
    # 检测关键点和计算描述符(特征向量) 源图像
    kp1, des1 = sift.detectAndCompute(src, None)     # 第二个参数:掩膜
    # 检测关键点和计算描述符 模板图像
    kp2, des2 = sift.detectAndCompute(model, None)
    # 创建FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    # 使用k近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)
    matches = flann.knnMatch(des1, des2, k=2)
# distance:匹配的特征点描述符的欧式距离,数值越小也就说明俩个特征点越相近。
# queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下标。
# trainIdx:样本图像的特征点描述符下标, 同时也是描述符对应特征点的下标。
    # 进行比较筛选
    ok = []
    for m, n in matcjshes:#m是最接近点的匹配结果,n是次接近点的匹配结果
        # 根据Lowe's比率测试,选择最佳匹配
        if m.distance < 0.8 * n.diChina编程stance:
            ok.append(m)
    # 统计通过筛选的匹配数量
    num = lejsn(ok)
    if num >= 500:
        result = "认证通过"
    else:
        result = "认证失败"
    return result

首先,创建 SIFT 特征提取器对象sift。

然后,分别对输入的待验证指纹图像src和模板指纹图像model使用sift.detectAndCompute方法检测关键点并计算描述符。detectAndCompute方法的第一个参数是图像,第二个参数是掩膜(这里设为None)。

接着,创建 FLANN 匹配器对象flann,并使用flann.knnMatch方法对两个图像的描述符进行匹配,k=2表示为每个描述符找到两个最近的匹配。

之后,通过遍历匹配结果,根据 Lowe's 比率测试(即m.distance < 0.8 * n.distance)筛选出最佳匹配点,存入ok列表。

最后,统计ok列表的长度,即匹配点的数量。如果数量大于等于 500,则认为认证通过,返回 "认证通过";否则返回 "认证

3. 主函数

if __name__ == "__main__":
    src1 = cv2.imread("src1.BMP")
    cv_show('src1', src1)
    src2 = cv2.imread("src2.BMP")
    cv_show('src2', src2)
    model = cv2.imread("model.BMP")
    cv_show('model', model)
    result1= verification(src1, model)
    result2= verification(src2, model)
    print("src1验证结果为:", result1)
    print("src2验证结果为:", result2)

在主函数中,首先使用cv2.imread函数读取三张图像,分别是src1.BMP、src2.BMP(待验证指纹图像)和model.BMP(模板指纹图像)。然后使用cv_show函数依次显示这三张图像。接着,分别对src1和src2调用verification函数进行指纹验证,并将结果存储在result1和result2中。最后,打印出两个待验证指纹图像的验证结果。

4、运行结果

opencv图像处理之指纹验证的实现

三、总结

通过上述代码,我们成功实现了一个基于 OpenCV 的简单指纹验证系统。这个系统能够根据指纹图像的特征匹配情况判断指纹是否匹配。然而,实际应用中,还存在一些可以优化和改进的地方。例如,指纹图像的预处理(如去噪、增强对比度等)可以进一步提高特征提取的准确性;调整匹配算法的参数或尝试其他更先进的匹配算法,可以提高匹配的精度和效率。希望本文的介绍和代码示例能够帮助你对 OpenCV 指纹验证技术有更深入的理解,也期待你在实际应用中不断探索和完善,将指纹验证技术应用到更多有价值的场景中。

到此这篇关于opencv图像处理之指纹验证的实现的文章就介绍到这了,更多相关opencv 指纹验证内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于opencv图像处理之指纹验证的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154054

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S