opencv图像处理之指纹验证的实现

2025-04-02 15:50

本文主要是介绍opencv图像处理之指纹验证的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学...

一、简介

在当今数字化时代,生物识别技术作为一种安全、便捷的身份验证方式js,正广泛应用于各个领域。指纹识别作为生物识别技术中的佼佼者,因其独特性和稳定性,成为了众多应用场景的首选。今天,我们就来深入探讨如何利用 OpenCV 库实现一个简单的指纹识别系统,并详细解读相关代码。

二、具体案例实现

本例是将src1和src2与模板model进行匹配的一个代码实现

opencv图像处理之指纹验证的实现

具体代码如下

import cv2
def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
def verification(src, model):
    # 创建SIFT特征提取器
    sift = cv2.SIFT_create()
    # 检测关键点和计算描述符(特征向量) 源图像
    kp1, des1 = sift.detectAndCompute(src, None)     # 第二个参数:掩膜
    # 检测关键点和计算描述符 模板图像
    kp2, des2 = sift.detectAndCompute(model, None)
    # 创建FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    # 使用k近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)
    matches = flann.knnMatch(des1, des2, k=2)
# distance:匹配的特征点描述符的欧式距离,数值越小也就说明俩个特征点越相近。
# queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下标。
# trainIdx:样本图像的特征点描述符下标, 同时也是描述符对应特征点的下标。
    # 进行比较筛选
    ok = []
    for m, n in matches:#m是最接近点的匹配结果,n是次接近点的匹配结果
        # 根据Lowe's比率测试,选择最佳匹配
        if m.distance < 0.8 * n.distance:
            ok.append(m)
    # 统计通过筛选的匹配数量
    num = len(ok)
    if num >= 500:
        result = 编程"认证通过"
    else:
        result = "认证失败"
    return result
if __name__ == "__main__":
    src1 = cv2.imread("src1.BMP")
    cv_show('src1', src1)
    src2 = cv2.imread("src2.BMP")
    cv_show('src2', src2)
    model = cv2.imread("model.BMP")
    cv_show('model', model)
    result1= verification(src1, model)
    result2= verification(src2, model)
    print("src1验证结果为:", result1)
    print("src2验证结果为:", result2)

1. 图像显示函数

def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)

这个函数的作用是使用 OpenCV 的imshow函数显示图像,并通过waitKey(0)等待用户按下任意键后关闭图像窗口。name参数是窗口的名称,img参数是要显示的图像数据

2. 指纹验证函数

def verification(src, model):
    # 创建SIFT特征提取器
    sift = cv2.SIFT_create()
    # 检测关键点和计算描述符(特征向量) 源图像
    kp1, des1 = sift.detectAndCompute(src, None)     # 第二个参数:掩膜
    # 检测关键点和计算描述符 模板图像
    kp2, des2 = sift.detectAndCompute(model, None)
    # 创建FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    # 使用k近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)
    matches = flann.knnMatch(des1, des2, k=2)
# distance:匹配的特征点描述符的欧式距离,数值越小也就说明俩个特征点越相近。
# queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下标。
# trainIdx:样本图像的特征点描述符下标, 同时也是描述符对应特征点的下标。
    # 进行比较筛选
    ok = []
    for m, n in matcjshes:#m是最接近点的匹配结果,n是次接近点的匹配结果
        # 根据Lowe's比率测试,选择最佳匹配
        if m.distance < 0.8 * n.diChina编程stance:
            ok.append(m)
    # 统计通过筛选的匹配数量
    num = lejsn(ok)
    if num >= 500:
        result = "认证通过"
    else:
        result = "认证失败"
    return result

首先,创建 SIFT 特征提取器对象sift。

然后,分别对输入的待验证指纹图像src和模板指纹图像model使用sift.detectAndCompute方法检测关键点并计算描述符。detectAndCompute方法的第一个参数是图像,第二个参数是掩膜(这里设为None)。

接着,创建 FLANN 匹配器对象flann,并使用flann.knnMatch方法对两个图像的描述符进行匹配,k=2表示为每个描述符找到两个最近的匹配。

之后,通过遍历匹配结果,根据 Lowe's 比率测试(即m.distance < 0.8 * n.distance)筛选出最佳匹配点,存入ok列表。

最后,统计ok列表的长度,即匹配点的数量。如果数量大于等于 500,则认为认证通过,返回 "认证通过";否则返回 "认证

3. 主函数

if __name__ == "__main__":
    src1 = cv2.imread("src1.BMP")
    cv_show('src1', src1)
    src2 = cv2.imread("src2.BMP")
    cv_show('src2', src2)
    model = cv2.imread("model.BMP")
    cv_show('model', model)
    result1= verification(src1, model)
    result2= verification(src2, model)
    print("src1验证结果为:", result1)
    print("src2验证结果为:", result2)

在主函数中,首先使用cv2.imread函数读取三张图像,分别是src1.BMP、src2.BMP(待验证指纹图像)和model.BMP(模板指纹图像)。然后使用cv_show函数依次显示这三张图像。接着,分别对src1和src2调用verification函数进行指纹验证,并将结果存储在result1和result2中。最后,打印出两个待验证指纹图像的验证结果。

4、运行结果

opencv图像处理之指纹验证的实现

三、总结

通过上述代码,我们成功实现了一个基于 OpenCV 的简单指纹验证系统。这个系统能够根据指纹图像的特征匹配情况判断指纹是否匹配。然而,实际应用中,还存在一些可以优化和改进的地方。例如,指纹图像的预处理(如去噪、增强对比度等)可以进一步提高特征提取的准确性;调整匹配算法的参数或尝试其他更先进的匹配算法,可以提高匹配的精度和效率。希望本文的介绍和代码示例能够帮助你对 OpenCV 指纹验证技术有更深入的理解,也期待你在实际应用中不断探索和完善,将指纹验证技术应用到更多有价值的场景中。

到此这篇关于opencv图像处理之指纹验证的实现的文章就介绍到这了,更多相关opencv 指纹验证内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于opencv图像处理之指纹验证的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154054

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont