opencv图像处理之指纹验证的实现

2025-04-02 15:50

本文主要是介绍opencv图像处理之指纹验证的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学...

一、简介

在当今数字化时代,生物识别技术作为一种安全、便捷的身份验证方式js,正广泛应用于各个领域。指纹识别作为生物识别技术中的佼佼者,因其独特性和稳定性,成为了众多应用场景的首选。今天,我们就来深入探讨如何利用 OpenCV 库实现一个简单的指纹识别系统,并详细解读相关代码。

二、具体案例实现

本例是将src1和src2与模板model进行匹配的一个代码实现

opencv图像处理之指纹验证的实现

具体代码如下

import cv2
def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
def verification(src, model):
    # 创建SIFT特征提取器
    sift = cv2.SIFT_create()
    # 检测关键点和计算描述符(特征向量) 源图像
    kp1, des1 = sift.detectAndCompute(src, None)     # 第二个参数:掩膜
    # 检测关键点和计算描述符 模板图像
    kp2, des2 = sift.detectAndCompute(model, None)
    # 创建FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    # 使用k近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)
    matches = flann.knnMatch(des1, des2, k=2)
# distance:匹配的特征点描述符的欧式距离,数值越小也就说明俩个特征点越相近。
# queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下标。
# trainIdx:样本图像的特征点描述符下标, 同时也是描述符对应特征点的下标。
    # 进行比较筛选
    ok = []
    for m, n in matches:#m是最接近点的匹配结果,n是次接近点的匹配结果
        # 根据Lowe's比率测试,选择最佳匹配
        if m.distance < 0.8 * n.distance:
            ok.append(m)
    # 统计通过筛选的匹配数量
    num = len(ok)
    if num >= 500:
        result = 编程"认证通过"
    else:
        result = "认证失败"
    return result
if __name__ == "__main__":
    src1 = cv2.imread("src1.BMP")
    cv_show('src1', src1)
    src2 = cv2.imread("src2.BMP")
    cv_show('src2', src2)
    model = cv2.imread("model.BMP")
    cv_show('model', model)
    result1= verification(src1, model)
    result2= verification(src2, model)
    print("src1验证结果为:", result1)
    print("src2验证结果为:", result2)

1. 图像显示函数

def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)

这个函数的作用是使用 OpenCV 的imshow函数显示图像,并通过waitKey(0)等待用户按下任意键后关闭图像窗口。name参数是窗口的名称,img参数是要显示的图像数据

2. 指纹验证函数

def verification(src, model):
    # 创建SIFT特征提取器
    sift = cv2.SIFT_create()
    # 检测关键点和计算描述符(特征向量) 源图像
    kp1, des1 = sift.detectAndCompute(src, None)     # 第二个参数:掩膜
    # 检测关键点和计算描述符 模板图像
    kp2, des2 = sift.detectAndCompute(model, None)
    # 创建FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    # 使用k近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)
    matches = flann.knnMatch(des1, des2, k=2)
# distance:匹配的特征点描述符的欧式距离,数值越小也就说明俩个特征点越相近。
# queryIdx:测试图像的特征点描述符的下标(第几个特征点描述符),同时也是描述符对应特征点的下标。
# trainIdx:样本图像的特征点描述符下标, 同时也是描述符对应特征点的下标。
    # 进行比较筛选
    ok = []
    for m, n in matcjshes:#m是最接近点的匹配结果,n是次接近点的匹配结果
        # 根据Lowe's比率测试,选择最佳匹配
        if m.distance < 0.8 * n.diChina编程stance:
            ok.append(m)
    # 统计通过筛选的匹配数量
    num = lejsn(ok)
    if num >= 500:
        result = "认证通过"
    else:
        result = "认证失败"
    return result

首先,创建 SIFT 特征提取器对象sift。

然后,分别对输入的待验证指纹图像src和模板指纹图像model使用sift.detectAndCompute方法检测关键点并计算描述符。detectAndCompute方法的第一个参数是图像,第二个参数是掩膜(这里设为None)。

接着,创建 FLANN 匹配器对象flann,并使用flann.knnMatch方法对两个图像的描述符进行匹配,k=2表示为每个描述符找到两个最近的匹配。

之后,通过遍历匹配结果,根据 Lowe's 比率测试(即m.distance < 0.8 * n.distance)筛选出最佳匹配点,存入ok列表。

最后,统计ok列表的长度,即匹配点的数量。如果数量大于等于 500,则认为认证通过,返回 "认证通过";否则返回 "认证

3. 主函数

if __name__ == "__main__":
    src1 = cv2.imread("src1.BMP")
    cv_show('src1', src1)
    src2 = cv2.imread("src2.BMP")
    cv_show('src2', src2)
    model = cv2.imread("model.BMP")
    cv_show('model', model)
    result1= verification(src1, model)
    result2= verification(src2, model)
    print("src1验证结果为:", result1)
    print("src2验证结果为:", result2)

在主函数中,首先使用cv2.imread函数读取三张图像,分别是src1.BMP、src2.BMP(待验证指纹图像)和model.BMP(模板指纹图像)。然后使用cv_show函数依次显示这三张图像。接着,分别对src1和src2调用verification函数进行指纹验证,并将结果存储在result1和result2中。最后,打印出两个待验证指纹图像的验证结果。

4、运行结果

opencv图像处理之指纹验证的实现

三、总结

通过上述代码,我们成功实现了一个基于 OpenCV 的简单指纹验证系统。这个系统能够根据指纹图像的特征匹配情况判断指纹是否匹配。然而,实际应用中,还存在一些可以优化和改进的地方。例如,指纹图像的预处理(如去噪、增强对比度等)可以进一步提高特征提取的准确性;调整匹配算法的参数或尝试其他更先进的匹配算法,可以提高匹配的精度和效率。希望本文的介绍和代码示例能够帮助你对 OpenCV 指纹验证技术有更深入的理解,也期待你在实际应用中不断探索和完善,将指纹验证技术应用到更多有价值的场景中。

到此这篇关于opencv图像处理之指纹验证的实现的文章就介绍到这了,更多相关opencv 指纹验证内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于opencv图像处理之指纹验证的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154054

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J