【lightgbm, xgboost, nn代码整理一】lightgbm做二分类,多分类以及回归任务(含python源码)

2024-06-12 22:38

本文主要是介绍【lightgbm, xgboost, nn代码整理一】lightgbm做二分类,多分类以及回归任务(含python源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

lightgbm做二分类,多分类以及回归任务(含python源码)

浏览更多内容,可访问:http://www.growai.cn

1. 简介

内心一直想把自己前一段时间写的代码整理一下,梳理一下知识点,方便以后查看,同时也方便和大家交流。希望我的分享能帮助到一些小白用户快速前进,也希望大家看到不足之处慷慨的指出,相互学习,快速成长。我将从三个部分介绍数据挖掘类比赛中常用的一些方法,分别是lightgbm、xgboost和keras实现的mlp模型,分别介绍他们实现的二分类任务、多分类任务和回归任务,并给出完整的开源python代码。这篇文章主要介绍基于lightgbm实现的三类任务。如果只需源码,可以直接跳到文章末尾链接

2.数据加载

该部分数据是基于拍拍贷比赛截取的一部分特征,随机选择了5000个训练数据,3000个测试数据。针对其中gender、cell_province等类别特征,直接进行重新编码处理。原始数据的lable是0-32,共有33个类别的数据。针对二分类任务,将原始label为32的数据直接转化为1,label为其他的数据转为0;回归问题就是将这些类别作为待预测的目标值。代码如下:其中gc是释放不必要的内存。

## category feature one_hot
test_data['label'] = -1
data = pd.concat([train_data, test_data])
cate_feature = ['gender', 'cell_province', 'id_province', 'id_city', 'rate', 'term']
for item in cate_feature:data[item] = LabelEncoder().fit_transform(data[item])train = data[data['label'] != -1]
test = data[data['label'] == -1]## Clean up the memory
del data, train_data, test_data
gc.collect()## get train feature
del_feature = ['auditing_date', 'due_date', 'label']
features = [i for i in train.columns if i not in del_feature]## Convert the label to two categories
train['label'] = train['label'].apply(lambda x: 1 if x==32 else 0)
train_x = train[features]
train_y = train['label'].values
test = test[features]

3.二分类任务

params = {'num_leaves': 60, #结果对最终效果影响较大,越大值越好,太大会出现过拟合'min_data_in_leaf': 30,'objective': 'binary', #定义的目标函数'max_depth': -1,'learning_rate': 0.03,"min_sum_hessian_in_leaf": 6,"boosting": "gbdt","feature_fraction": 0.9,	#提取的特征比率"bagging_freq": 1,"bagging_fraction": 0.8,"bagging_seed": 11,"lambda_l1": 0.1,				#l1正则# 'lambda_l2': 0.001,		#l2正则"verbosity": -1,"nthread": -1,				#线程数量,-1表示全部线程,线程越多,运行的速度越快'metric': {'binary_logloss', 'auc'},	##评价函数选择"random_state": 2019,	#随机数种子,可以防止每次运行的结果不一致# 'device': 'gpu' ##如果安装的事gpu版本的lightgbm,可以加快运算}folds = KFold(n_splits=5, shuffle=True, random_state=2019)
prob_oof = np.zeros((train_x.shape[0], ))
test_pred_prob = np.zeros((test.shape[0], ))## train and predict
feature_importance_df = pd.DataFrame()
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train)):print("fold {}".format(fold_ + 1))trn_data = lgb.Dataset(train_x.iloc[trn_idx], label=train_y[trn_idx])val_data = lgb.Dataset(train_x.iloc[val_idx], label=train_y[val_idx])clf = lgb.train(params,trn_data,num_round,valid_sets=[trn_data, val_data],verbose_eval=20,early_stopping_rounds=60)prob_oof[val_idx] = clf.predict(train_x.iloc[val_idx], num_iteration=clf.best_iteration)fold_importance_df = pd.DataFrame()fold_importance_df["Feature"] = featuresfold_importance_df["importance"] = clf.feature_importance()fold_importance_df["fold"] = fold_ + 1feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)test_pred_prob += clf.predict(test[features], num_iteration=clf.best_iteration) / folds.n_splitsthreshold = 0.5
for pred in test_pred_prob:result = 1 if pred > threshold else 0

上面的参数中目标函数采用的事binary,评价函数采用的是{'binary_logloss', 'auc'},可以根据需要对评价函数做调整,可以设定一个或者多个评价函数;'num_leaves'对最终的结果影响较大,如果值设置的过大会出现过拟合现象。

针对模型训练部分,采用的事5折交叉训练的方法,常用的5折统计有两种:StratifiedKFoldKFold,其中最大的不同是StratifiedKFold分层采样交叉切分,确保训练集,测试集中各类别样本的比例与原始数据集中相同,实际使用中可以根据具体的数据分别测试两者的表现。

最后fold_importance_df表存放的事模型的特征重要性,可以方便分析特征重要性

4.多分类任务

params = {'num_leaves': 60,'min_data_in_leaf': 30,'objective': 'multiclass','num_class': 33,'max_depth': -1,'learning_rate': 0.03,"min_sum_hessian_in_leaf": 6,"boosting": "gbdt","feature_fraction": 0.9,"bagging_freq": 1,"bagging_fraction": 0.8,"bagging_seed": 11,"lambda_l1": 0.1,"verbosity": -1,"nthread": 15,'metric': 'multi_logloss',"random_state": 2019,# 'device': 'gpu' }folds = KFold(n_splits=5, shuffle=True, random_state=2019)
prob_oof = np.zeros((train_x.shape[0], 33))
test_pred_prob = np.zeros((test.shape[0], 33))## train and predict
feature_importance_df = pd.DataFrame()
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train)):print("fold {}".format(fold_ + 1))trn_data = lgb.Dataset(train_x.iloc[trn_idx], label=train_y.iloc[trn_idx])val_data = lgb.Dataset(train_x.iloc[val_idx], label=train_y.iloc[val_idx])clf = lgb.train(params,trn_data,num_round,valid_sets=[trn_data, val_data],verbose_eval=20,early_stopping_rounds=60)prob_oof[val_idx] = clf.predict(train_x.iloc[val_idx], num_iteration=clf.best_iteration)fold_importance_df = pd.DataFrame()fold_importance_df["Feature"] = featuresfold_importance_df["importance"] = clf.feature_importance()fold_importance_df["fold"] = fold_ + 1feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)test_pred_prob += clf.predict(test[features], num_iteration=clf.best_iteration) / folds.n_splits
result = np.argmax(test_pred_prob, axis=1)

该部分同上面最大的区别就是该表了损失函数和评价函数。分别更换为'multiclass''multi_logloss',当进行多分类任务是必须还要指定类别数:'num_class'

5.回归任务

params = {'num_leaves': 38,'min_data_in_leaf': 50,'objective': 'regression','max_depth': -1,'learning_rate': 0.02,"min_sum_hessian_in_leaf": 6,"boosting": "gbdt","feature_fraction": 0.9,"bagging_freq": 1,"bagging_fraction": 0.7,"bagging_seed": 11,"lambda_l1": 0.1,"verbosity": -1,"nthread": 4,'metric': 'mae',"random_state": 2019,# 'device': 'gpu'}def mean_absolute_percentage_error(y_true, y_pred):return np.mean(np.abs((y_true - y_pred) / (y_true))) * 100def smape_func(preds, dtrain):label = dtrain.get_label().valuesepsilon = 0.1summ = np.maximum(0.5 + epsilon, np.abs(label) + np.abs(preds) + epsilon)smape = np.mean(np.abs(label - preds) / summ) * 2return 'smape', float(smape), Falsefolds = KFold(n_splits=5, shuffle=True, random_state=2019)
oof = np.zeros(train_x.shape[0])
predictions = np.zeros(test.shape[0])train_y = np.log1p(train_y) # Data smoothing
feature_importance_df = pd.DataFrame()
for fold_, (trn_idx, val_idx) in enumerate(folds.split(train_x)):print("fold {}".format(fold_ + 1))trn_data = lgb.Dataset(train_x.iloc[trn_idx], label=train_y.iloc[trn_idx])val_data = lgb.Dataset(train_x.iloc[val_idx], label=train_y.iloc[val_idx])clf = lgb.train(params,trn_data,num_round,valid_sets=[trn_data, val_data],verbose_eval=200,early_stopping_rounds=200)oof[val_idx] = clf.predict(train_x.iloc[val_idx], num_iteration=clf.best_iteration)fold_importance_df = pd.DataFrame()fold_importance_df["Feature"] = featuresfold_importance_df["importance"] = clf.feature_importance()fold_importance_df["fold"] = fold_ + 1feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0)predictions += clf.predict(test, num_iteration=clf.best_iteration) / folds.n_splitsprint('mse %.6f' % mean_squared_error(train_y, oof))
print('mae %.6f' % mean_absolute_error(train_y, oof))result = np.expm1(predictions) #reduction
result = predictions

在回归任务中对目标函数值添加了一个log平滑,如果待预测的结果值跨度很大,做log平滑很有很好的效果提升。
代码链接:github

写在后面

欢迎您关注作者知乎:ML与DL成长之路

推荐关注公众号:AI成长社,ML与DL的成长圣地。

这篇关于【lightgbm, xgboost, nn代码整理一】lightgbm做二分类,多分类以及回归任务(含python源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055537

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal