Python 大规模数据存储与读取、并行计算:Dask库简述

2024-06-12 19:38

本文主要是介绍Python 大规模数据存储与读取、并行计算:Dask库简述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转自:https://blog.csdn.net/sinat_26917383/article/details/78044437

数据结构与pandas非常相似,比较容易理解。

  • 原文文档:http://dask.pydata.org/en/latest/index.html

github:https://github.com/dask

dask的内容很多,挑一些我比较看好的内容着重点一下。

一、数据读取与存储

先来看看dask能读入哪些内容:
这里写图片描述

1、csv

# pandas
import pandas as pd                    
df = pd.read_csv('2015-01-01.csv')      
df.groupby(df.user_id).value.mean()     #daskimport dask.dataframe as dddf = dd.read_csv('2015-*-*.csv')df.groupby(df.user_id).value.mean().compute()

 

非常相似,除了.compute()
.
2、Dask Array读取hdf5

import numpy as np                       import dask.array as da
f = h5py.File('myfile.hdf5')             f = h5py.File('myfile.hdf5')
x = np.array(f['/small-data'])           x = da.from_array(f['/big-data'],chunks=(1000, 1000))
x - x.mean(axis=1)                       x - x.mean(axis=1).compute()

左是Pandas,右边是dask

3、Dask Bag

import dask.bag as db
b = db.read_text('2015-*-*.json.gz').map(json.loads)
b.pluck('name').frequencies().topk(10, lambda pair: pair[1]).compute()

读取大规模json文件,几亿都很easy

>>> b = db.read_text('myfile.txt')
>>> b = db.read_text(['myfile.1.txt', 'myfile.2.txt', ...])
>>> b = db.read_text('myfile.*.txt')

读取txt

>>> import dask.bag as db
>>> b = db.from_sequence([{'name': 'Alice',   'balance': 100},
...                       {'name': 'Bob',     'balance': 200},
...                       {'name': 'Charlie', 'balance': 300}],
...                      npartitions=2)
>>> df = b.to_dataframe()

变为dataframe格式的内容

 

4、Dask Delayed 并行计算

from dask import delayed
L = []
for fn in filenames:                  # Use for loops to build up computation
    data = delayed(load)(fn)          # Delay execution of function
    L.append(delayed(process)(data))  # Build connections between variables

result = delayed(summarize)(L)
result.compute()

 

5、concurrent.futures自定义任务

from dask.distributed import Client
client = Client('scheduler:port')

futures = []
for fn in filenames:
    future = client.submit(load, fn)
    futures.append(future)

summary = client.submit(summarize, futures)
summary.result()


二、Delayed 并行计算模块

一个先行例子,本来的案例:

def inc(x):
    return x + 1

def double(x):
    return x + 2

def add(x, y):
    return x + y

data = [1, 2, 3, 4, 5]

output = []
for x in data:
    a = inc(x)
    b = double(x)
    c = add(a, b)
    output.append(c)

total = sum(output)

再来看看用delay加速的:
这里写图片描述

from dask import delayed

output = []
for x in data:
    a = delayed(inc)(x)
    b = delayed(double)(x)
    c = delayed(add)(a, b)
    output.append(c)

total = delayed(sum)(output)

还可以将计算流程可视化:

total.visualize()  # see image to the right

三、和SKLearn结合的并行算法

广义回归GLM:https://github.com/dask/dask-glm
tensorflow深度学习库:Dask-Tensorflow

以XGBoost为例,官方:https://github.com/dask/dask-xgboost
来看一个案例code
.
1、加载数据

import dask.dataframe as dd

# Subset of the columns to use
cols = ['Year', 'Month', 'DayOfWeek', 'Distance',
        'DepDelay', 'CRSDepTime', 'UniqueCarrier', 'Origin', 'Dest']

# Create the dataframe
df = dd.read_csv('s3://dask-data/airline-data/20*.csv', usecols=cols,
                  storage_options={'anon': True})

df = df.sample(frac=0.2) # we blow out ram otherwise

is_delayed = (df.DepDelay.fillna(16) > 15)

df['CRSDepTime'] = df['CRSDepTime'].clip(upper=2399)
del df['DepDelay']

df, is_delayed = persist(df, is_delayed)
progress(df, is_delayed)

 

2、One hot encode编码


df2 = dd.get_dummies(df.categorize()).persist()

这里写图片描述
.
3、准备训练集和测试集 + 训练

data_train, data_test = df2.random_split([0.9, 0.1],
                                         random_state=1234)
labels_train, labels_test = is_delayed.random_split([0.9, 0.1],
                                                    random_state=1234)

训练

import dask_xgboost as dxgb

params = {'objective': 'binary:logistic', 'nround': 1000,
          'max_depth': 16, 'eta': 0.01, 'subsample': 0.5,
          'min_child_weight': 1}

bst = dxgb.train(client, params, data_train, labels_train)
bst


4、预测

# Use normal XGBoost model with normal Pandas
import xgboost as xgb
dtest = xgb.DMatrix(data_test.head())
bst.predict(dtest)

predictions = dxgb.predict(client, bst, data_test).persist()
predictions.head()

 

.
5、模型评估

from sklearn.metrics import roc_auc_score, roc_curve
print(roc_auc_score(labels_test.compute(),
                    predictions.compute()))
import matplotlib.pyplot as plt
%matplotlib inline

fpr, tpr, _ = roc_curve(labels_test.compute(), predictions.compute())
# Taken from http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py
plt.figure(figsize=(8, 8))
lw = 2
plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve')
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()


.
四、计算流程可视化部分——Dask.array

来源:https://gist.github.com/mrocklin/b61f795004ec0a70e43de350e453e97e

import numpy as np
import dask.array as da
x = da.ones(15, chunks=(5,))
x.visualize('dask.svg')

 

(x + 1).sum().visualize('dask.svg')

来一个二维模块的:

x = da.ones((15, 15), chunks=(5, 5))
x.visualize('dask.svg')
(x.dot(x.T + 1) - x.mean(axis=0)).std().visualize('dask.svg')

---------------------
作者:悟乙己
来源:CSDN
原文:https://blog.csdn.net/sinat_26917383/article/details/78044437
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于Python 大规模数据存储与读取、并行计算:Dask库简述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055149

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: