AP_HAL 分析, 以pixhawk-fmuv2为硬件平台,ChibiOS为底层操作系统:

2024-06-12 14:18

本文主要是介绍AP_HAL 分析, 以pixhawk-fmuv2为硬件平台,ChibiOS为底层操作系统:,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. class AP_HAL::AP_HAL,该接口类聚合了所有提供给应用层的硬件接口

class AP_HAL::HAL {
public:HAL(AP_HAL::UARTDriver* _uartA, // consoleAP_HAL::UARTDriver* _uartB, // 1st GPSAP_HAL::UARTDriver* _uartC, // telem1AP_HAL::UARTDriver* _uartD, // telem2AP_HAL::UARTDriver* _uartE, // 2nd GPSAP_HAL::UARTDriver* _uartF, // extra1AP_HAL::UARTDriver* _uartG, // extra2AP_HAL::I2CDeviceManager* _i2c_mgr,AP_HAL::SPIDeviceManager* _spi,AP_HAL::AnalogIn*   _analogin,AP_HAL::Storage*    _storage,AP_HAL::UARTDriver* _console,AP_HAL::GPIO*       _gpio,AP_HAL::RCInput*    _rcin,AP_HAL::RCOutput*   _rcout,AP_HAL::Scheduler*  _scheduler,AP_HAL::Util*       _util,AP_HAL::OpticalFlow *_opticalflow,AP_HAL::Flash *_flash,
#if HAL_WITH_UAVCANAP_HAL::CANManager* _can_mgr[MAX_NUMBER_OF_CAN_DRIVERS])
#elseAP_HAL::CANManager** _can_mgr)
#endif:uartA(_uartA),uartB(_uartB),uartC(_uartC),uartD(_uartD),uartE(_uartE),uartF(_uartF),uartG(_uartG),i2c_mgr(_i2c_mgr),spi(_spi),analogin(_analogin),storage(_storage),console(_console),gpio(_gpio),rcin(_rcin),rcout(_rcout),scheduler(_scheduler),util(_util),opticalflow(_opticalflow),flash(_flash){
#if HAL_WITH_UAVCANif (_can_mgr == nullptr) {for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++)can_mgr[i] = nullptr;} else {for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++)can_mgr[i] = _can_mgr[i];}
#endifAP_HAL::init();}struct Callbacks {virtual void setup() = 0;virtual void loop() = 0;};struct FunCallbacks : public Callbacks {FunCallbacks(void (*setup_fun)(void), void (*loop_fun)(void));void setup() override { _setup(); }void loop() override { _loop(); }private:void (*_setup)(void);void (*_loop)(void);};virtual void run(int argc, char * const argv[], Callbacks* callbacks) const = 0;AP_HAL::UARTDriver* uartA;AP_HAL::UARTDriver* uartB;AP_HAL::UARTDriver* uartC;AP_HAL::UARTDriver* uartD;AP_HAL::UARTDriver* uartE;AP_HAL::UARTDriver* uartF;AP_HAL::UARTDriver* uartG;AP_HAL::I2CDeviceManager* i2c_mgr;AP_HAL::SPIDeviceManager* spi;AP_HAL::AnalogIn*   analogin;AP_HAL::Storage*    storage;AP_HAL::UARTDriver* console;AP_HAL::GPIO*       gpio;AP_HAL::RCInput*    rcin;AP_HAL::RCOutput*   rcout;AP_HAL::Scheduler*  scheduler;AP_HAL::Util        *util;AP_HAL::OpticalFlow *opticalflow;AP_HAL::Flash       *flash;
#if HAL_WITH_UAVCANAP_HAL::CANManager* can_mgr[MAX_NUMBER_OF_CAN_DRIVERS];
#elseAP_HAL::CANManager** can_mgr;
#endif
};

继承关系
AP_HAL继承关系

我们看到ardupilot中有四大系统平台(这里的系统平台指的是基于硬件平台的操作系统和底层驱动的集合,系统平台也可以是虚拟的)实现了该接口类,我们这里分析HAL_ChibiOS

2. class HAL_ChibiOS 实现了AP_HAL::HAL接口类

class HAL_ChibiOS : public AP_HAL::HAL {
public:HAL_ChibiOS();void run(int argc, char* const* argv, Callbacks* callbacks) const override;
};
在实现文件中我们看到:
static HAL_UARTA_DRIVER; ///< #define HAL_UARTA_DRIVER ChibiOS::UARTDriver uartADriver(0)
static HAL_UARTB_DRIVER; ///< #define HAL_UARTB_DRIVER ChibiOS::UARTDriver uartBDriver(1)
static HAL_UARTC_DRIVER; ///< #define HAL_UARTC_DRIVER ChibiOS::UARTDriver uartCDriver(2)
static HAL_UARTD_DRIVER; ///< #define HAL_UARTD_DRIVER ChibiOS::UARTDriver uartDDriver(3)
static HAL_UARTE_DRIVER; ///< #define HAL_UARTE_DRIVER ChibiOS::UARTDriver uartEDriver(4)
static HAL_UARTF_DRIVER; ///< #define HAL_UARTF_DRIVER ChibiOS::UARTDriver uartFDriver(5)
static HAL_UARTG_DRIVER; ///< #define HAL_UARTG_DRIVER Empty::UARTDriver uartGDriver
///< 前面这些宏定义在build/fmuv2/hwdef.h头文件中, 该头文件在编译时由python脚本从hwdef.dat文件中解析然后生成
///< 我们这里的硬件平台的硬件定义文件位于:ardupilot/libraries/AP_HAL_ChibiOS/hwdef/fmuv2/hwdef.dat
static ChibiOS::I2CDeviceManager i2cDeviceManager;
static ChibiOS::SPIDeviceManager spiDeviceManager;
static ChibiOS::AnalogIn analogIn;
static ChibiOS::Storage storageDriver;
static ChibiOS::GPIO gpioDriver;
static ChibiOS::RCInput rcinDriver;
static ChibiOS::RCOutput rcoutDriver;
static ChibiOS::Scheduler schedulerInstance;
static ChibiOS::Util utilInstance;
static Empty::OpticalFlow opticalFlowDriver;
static ChibiOS::Flash flashDriver;

在构造函数中,这些对象会被传递进去:

HAL_ChibiOS::HAL_ChibiOS() :AP_HAL::HAL(&uartADriver,&uartBDriver,&uartCDriver,&uartDDriver,&uartEDriver,&uartFDriver,&uartGDriver,&i2cDeviceManager,&spiDeviceManager,&analogIn,&storageDriver,&uartADriver,&gpioDriver,&rcinDriver,&rcoutDriver,&schedulerInstance,&utilInstance,&opticalFlowDriver,&flashDriver,nullptr)
{}

3. 我们进入到具体的uartADriver实例对应的类ChibiOS::UARTDriver中,其属于AP_HAL::UARTDriver接口的实现

继承关系
可以看到,四大系统平台都分别实现了AP_HAL::UARTDriver接口
协作图

class ChibiOS::UARTDriver : public AP_HAL::UARTDriver { ///< 
public:UARTDriver(uint8_t serial_num);void begin(uint32_t b) override;void begin(uint32_t b, uint16_t rxS, uint16_t txS) override;void end() override;void flush() override;bool is_initialized() override;void set_blocking_writes(bool blocking) override;bool tx_pending() override;uint32_t available() override;uint32_t txspace() override;int16_t read() override;int16_t read_locked(uint32_t key) override;void _timer_tick(void) override;size_t write(uint8_t c) override;size_t write(const uint8_t *buffer, size_t size) override;// lock a port for exclusive use. Use a key of 0 to unlockbool lock_port(uint32_t write_key, uint32_t read_key) override;// control optional featuresbool set_options(uint8_t options) override;// write to a locked port. If port is locked and key is not correct then 0 is returned// and write is discardedsize_t write_locked(const uint8_t *buffer, size_t size, uint32_t key) override;struct SerialDef {BaseSequentialStream* serial;bool is_usb;bool dma_rx;uint8_t dma_rx_stream_id;uint32_t dma_rx_channel_id;bool dma_tx;uint8_t dma_tx_stream_id;uint32_t dma_tx_channel_id; ioline_t rts_line;int8_t rxinv_gpio;uint8_t rxinv_polarity;int8_t txinv_gpio;uint8_t txinv_polarity;uint8_t get_index(void) const {return uint8_t(this - &_serial_tab[0]);}};bool wait_timeout(uint16_t n, uint32_t timeout_ms) override;void set_flow_control(enum flow_control flow_control) override;enum flow_control get_flow_control(void) override { return _flow_control; }// allow for low latency writesbool set_unbuffered_writes(bool on) override;void configure_parity(uint8_t v) override;void set_stop_bits(int n) override;/*return timestamp estimate in microseconds for when the start ofa nbytes packet arrived on the uart. This should be treated as atime constraint, not an exact time. It is guaranteed that thepacket did not start being received after this time, but itcould have been in a system buffer before the returned time.This takes account of the baudrate of the link. For transportsthat have no baudrate (such as USB) the time estimate may beless accurate.A return value of zero means the HAL does not support this API*/uint64_t receive_time_constraint_us(uint16_t nbytes) override;uint32_t bw_in_kilobytes_per_second() const override {if (sdef.is_usb) {return 200;}return _baudrate/(9*1024);}private:bool tx_bounce_buf_ready;const SerialDef &sdef;// thread used for all UARTsstatic thread_t *uart_thread_ctx;// table to find UARTDrivers from serial number, used for event handlingstatic UARTDriver *uart_drivers[UART_MAX_DRIVERS];// index into uart_drivers tableuint8_t serial_num;// key for a locked portuint32_t lock_write_key;uint32_t lock_read_key;uint32_t _baudrate;uint16_t tx_len;
#if HAL_USE_SERIAL == TRUESerialConfig sercfg;
#endifconst thread_t* _uart_owner_thd;struct {// thread waiting for datathread_t *thread_ctx;// number of bytes neededuint16_t n;} _wait;// we use in-task ring buffers to reduce the system call cost// of ::read() and ::write() in the main loop,使用ringbuffer降低mainloop中read/write系统调用开销uint8_t *rx_bounce_buf;///< 接收弹性bufferuint8_t *tx_bounce_buf;///< 发送弹性bufferByteBuffer _readbuf{0}; ///< 接收ringbufferByteBuffer _writebuf{0};///< 发送ringbufferSemaphore _write_mutex;const stm32_dma_stream_t* rxdma; ///< 接收dmaconst stm32_dma_stream_t* txdma; ///< 发送dmavirtual_timer_t tx_timeout;    bool _in_timer;bool _blocking_writes;bool _initialised;bool _device_initialised;bool _lock_rx_in_timer_tick = false;Shared_DMA *dma_handle;static const SerialDef _serial_tab[];// timestamp for receiving data on the UART, avoiding a lockuint64_t _receive_timestamp[2];uint8_t _receive_timestamp_idx;// handling of flow controlenum flow_control _flow_control = FLOW_CONTROL_DISABLE;bool _rts_is_active;uint32_t _last_write_completed_us;uint32_t _first_write_started_us;uint32_t _total_written;// we remember cr2 and cr2 options from set_options to apply on sdStart()uint32_t _cr3_options;uint32_t _cr2_options;// half duplex control. After writing we throw away bytes for 4 byte widths to// prevent reading our own bytes backbool half_duplex;uint32_t hd_read_delay_us;uint32_t hd_write_us;void half_duplex_setup_delay(uint16_t len);// set to true for unbuffered writes (low latency writes)bool unbuffered_writes;static void rx_irq_cb(void* sd);static void rxbuff_full_irq(void* self, uint32_t flags);static void tx_complete(void* self, uint32_t flags);static void handle_tx_timeout(void *arg);void dma_tx_allocate(Shared_DMA *ctx);void dma_tx_deallocate(Shared_DMA *ctx);void update_rts_line(void);void check_dma_tx_completion(void);void write_pending_bytes_DMA(uint32_t n);void write_pending_bytes_NODMA(uint32_t n);void write_pending_bytes(void);void receive_timestamp_update(void);void thread_init();static void uart_thread(void *);
};

QA1.

  1. 首先,HAL_ChibiOS 是 AP_HAL::HAL这个抽象类的 以ChibiOS为具体操作系统的派生类,所以按照C++惯例,子类构造函数中显式调用基类构造函数即AP_HAL::HAL();
  2. HAL_ChibiOS 相当于已经落实到了具象的操作系统软件硬件平台,比如uartA,他提供具体的:

static HAL_UARTA_DRIVER;

而宏在具体的硬件定义比如fmuv2/ArduPilot_743头文件hwdef.h中:

#define HAL_UARTA_DRIVER ChibiOS::UARTDriver uartADriver(0)

替换完成就是:

ChibiOS::UARTDriver uartADriver(0)

也就是使用ChibiOS领域(namespace)内的UARTDriver 实例化一个对象 uartADriver 并将其地址传入到AP_HAL::HAL基类构造函数中,利用多态特性完成抽象到具体的特化,因为具体的业务逻辑比如ArduCopter或APMrover等凡是在涉及具体软硬件平台方面的操作都是面向接口编程的

故而可以总结业务逻辑层:               ArduCopter ... APMrover\       |         /	-----AP_HAL 层---||----------------------------------/                |                 \软硬件平台层:ChibiOS+fmuv2 ...ChibiOS+fmuv5... linux+树莓派等

这篇关于AP_HAL 分析, 以pixhawk-fmuv2为硬件平台,ChibiOS为底层操作系统:的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054453

相关文章

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Linux中查看操作系统及其版本信息的多种方法

《Linux中查看操作系统及其版本信息的多种方法》在服务器运维或者部署系统中,经常需要确认服务器的系统版本、cpu信息等,在Linux系统中,有多种方法可以查看操作系统及其版本信息,以下是一些常用的方... 目录1. lsb_pythonrelease 命令2. /etc/os-release 文件3. h

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数