pyspark dataframe数据分析常用算子

2024-06-12 12:38

本文主要是介绍pyspark dataframe数据分析常用算子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

        • 1.createDataFrame,创建dataframe
        • 2.show
        • 3. filter,过滤
        • 4.空值过滤
        • 空值填充
        • 5. groupBy,分组
        • 6.重命名列
        • 7.explode:一列变多行
        • 8.去重
        • 9. when
        • 10.union,合并dataframe
        • 11.like
        • 12.数据保存
        • 13.drop
        • 14.cast:数据类型转换

1.createDataFrame,创建dataframe
df = spark.createDataFrame([(144.5, 185, 33, 'M', 'China'),(167.2, 165, 45, 'M', 'China'),(124.1, 170, 17, 'F', 'Japan'),(144.5, 185, 33, 'M', 'Pakistan'),(156.5, 180, 54, 'F', None),(124.1, 170, 23, 'F', 'Pakistan'),(129.2, 175, 62, 'M', 'Russia'),], ['weight', 'height', 'age', 'gender', 'country'])
2.show
df.show()
默认会把超过20个字符的部分进行截断,如果不想截断,可以进行如下设置
df.show(truncate=False)
3. filter,过滤

(1)单条件过滤

df.filter(df['age'] == 33)
或者
df.filter('age = 33')

(2)多条件过滤

# 'or'
df.filter((df['age'] == 33) | (df['gender'] == 'M'))
# 'and'
df.filter((df['age'] == 33) & (df['gender'] == 'M'))
4.空值过滤
  1. 过滤某一个属性不为空的记录
df.filter("country is not null")
# 或者
df.filter(df["country"].isNotNull())
# 或者
df[df["country"].isNotNull()]

注意:空字符串""并不会被过滤出来
2. 过滤某一个属性为空的记录

df.filter("country is null")
# 或者
df.filter(df["country"].isNull())
空值填充
df.fillna({"country": "China"})
5. groupBy,分组
  1. 分组后统计数量
df.groupBy(df["age"]).count().show()
+---+-----+
|age|count|
+---+-----+
| 54|    1|
| 33|    2|
| 42|    1|
| 23|    2|
| 45|    1|
+---+-----+
6.重命名列
  1. alias
df.select(F.col("country").alias("state"))
  1. withColumnRenamed
df.withColumnRenamed("country", "state")
7.explode:一列变多行
import pyspark.sql.functions as F
from pyspark.sql.types import *
df = spark.createDataFrame([('u1', 'i1', 'r001,r002,r003'),('u2', 'i2', 'r002,r003'),('u3', 'i3', 'r001')], ['user_id', 'item_id', 'recall_id'])

首先基于recall_id这一列新建一列recall_id_lst

df = df\.withColumn("recall_id_lst", F.udf(lambda x: x.split(','), returnType=ArrayType(StringType()))(F.col("recall_id")))
# 结果
+-------+-------+--------------+------------------+
|user_id|item_id|     recall_id|     recall_id_lst|
+-------+-------+--------------+------------------+
|     u1|     i1|r001,r002,r003|[r001, r002, r003]|
|     u2|     i2|     r002,r003|      [r002, r003]|
|     u3|     i3|          r001|            [r001]|
+-------+-------+--------------+------------------+

然后把recall_id_lst这一列变成多行


df.select("user_id", "item_id", F.explode(F.col("recall_id_lst")).alias("recall_id_plat"))
# 结果
+-------+-------+--------------+
|user_id|item_id|recall_id_plat|
+-------+-------+--------------+
|     u1|     i1|          r001|
|     u1|     i1|          r002|
|     u1|     i1|          r003|
|     u2|     i2|          r002|
|     u2|     i2|          r003|
|     u3|     i3|          r001|
+-------+-------+--------------+
8.去重

基于多列去重

df.dropDuplicates(['weight', 'height'])
9. when
df.withColumn("age_range", F.when(df.age > 60, "old").when((df.age > 18) & (df.age <= 60),"mid").otherwise("young"))
10.union,合并dataframe
df.union(df)
11.like
df.filter(df.country.like('%Jap%'))

可用于判断某一列字段是否包含某些字符串

12.数据保存
df.write.mode("overwrite")\.save(path, header=True, format='csv')
13.drop
df = df.drop("age", "gender")
14.cast:数据类型转换
from pyspark.sql.types import FloatType
df = df.withColumn(col, df[col].cast(FloatType()))

后续会不断把常用到的算子整理到博客中~

【参考】:
1.http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html#pyspark.sql.functions

这篇关于pyspark dataframe数据分析常用算子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054237

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr

Spring Boot 常用注解整理(最全收藏版)

《SpringBoot常用注解整理(最全收藏版)》本文系统整理了常用的Spring/SpringBoot注解,按照功能分类进行介绍,每个注解都会涵盖其含义、提供来源、应用场景以及代码示例,帮助开发... 目录Spring & Spring Boot 常用注解整理一、Spring Boot 核心注解二、Spr

Java中的内部类和常用类用法解读

《Java中的内部类和常用类用法解读》:本文主要介绍Java中的内部类和常用类用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录内部类和常用类内部类成员内部类静态内部类局部内部类匿名内部类常用类Object类包装类String类StringBuffer和Stri

MySQL连接池(Pool)常用方法详解

《MySQL连接池(Pool)常用方法详解》本文详细介绍了MySQL连接池的常用方法,包括创建连接池、核心方法连接对象的方法、连接池管理方法以及事务处理,同时,还提供了最佳实践和性能提示,帮助开发者构... 目录mysql 连接池 (Pool) 常用方法详解1. 创建连接池2. 核心方法2.1 pool.q

Spring Boot 常用注解详解与使用最佳实践建议

《SpringBoot常用注解详解与使用最佳实践建议》:本文主要介绍SpringBoot常用注解详解与使用最佳实践建议,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、核心启动注解1. @SpringBootApplication2. @EnableAutoConfi

SQL常用操作精华之复制表、跨库查询、删除重复数据

《SQL常用操作精华之复制表、跨库查询、删除重复数据》:本文主要介绍SQL常用操作精华之复制表、跨库查询、删除重复数据,这些SQL操作涵盖了数据库开发中最常用的技术点,包括表操作、数据查询、数据管... 目录SQL常用操作精华总结表结构与数据操作高级查询技巧SQL常用操作精华总结表结构与数据操作复制表结