系统内存分配的首次适应算法和最佳适应算法链表模拟实现

2024-06-12 08:38

本文主要是介绍系统内存分配的首次适应算法和最佳适应算法链表模拟实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

#include<iostream>
#include<stdlib.h>
using namespace std;


#define Free 0 //空闲状态
#define Busy 1 //已用状态
#define OK 1    //完成
#define ERROR 0 //出错
#define MAX_length 640 //最大内存空间为640KB
typedef int Status;


typedef struct freearea//定义一个空闲区说明表结构
{
int ID;   //分区号
long size;   //分区大小
long address; //分区地址
int state;   //状态
}ElemType;


//----------  线性表的双向链表存储结构  ------------
typedef struct DuLNode //double linked list
{
ElemType data;
struct DuLNode *prior; //前趋指针
struct DuLNode *next;  //后继指针
}DuLNode, *DuLinkList;


DuLinkList block_first; //头结点
DuLinkList block_last;  //尾结点


Status alloc(int);//内存分配
Status free(int); //内存回收
Status First_fit(int, int);//首次适应算法
Status Best_fit(int, int); //最佳适应算法
void show();//查看分配
Status Initblock();//开创空间表


Status Initblock()//开创带头结点的内存空间链表
{
block_first = (DuLinkList)malloc(sizeof(DuLNode));
block_last = (DuLinkList)malloc(sizeof(DuLNode));
block_first->prior = NULL;
block_first->next = block_last;
block_first->data.state = 3;
block_first->data.size = 0;
block_last->prior = block_first;
block_last->next = NULL;
block_last->data.address = 0;
block_last->data.size = MAX_length;
block_last->data.ID = 0;
block_last->data.state = Free;
return OK;
}


//----------------------- 分 配 主 存 -------------------------
Status alloc(int ch)
{
int ID, request;
cout << "请输入作业(分区号(整数)):";
cin >> ID;
cout << "请输入需要分配的主存大小(单位:KB):";
cin >> request;
if (request<0 || request == 0)
{
cout << "分配大小不合适,请重试!" << endl;
return ERROR;
}


if (ch == 2) //选择最佳适应算法
{
if (Best_fit(ID, request) == OK) cout << "分配成功!" << endl;
else cout << "内存不足,分配失败!" << endl;
return OK;
}
else //默认首次适应算法
{
if (First_fit(ID, request) == OK) cout << "分配成功!" << endl;
else cout << "内存不足,分配失败!" << endl;
return OK;
}
}
//------------------ 首次适应算法 -----------------------
Status First_fit(int ID, int request)//传入作业名及申请量
{
DuLNode *p = block_first->next;
//请在此处添加为作业申请新空间且初始化的代码
//请在此处完成首次适应算法的代码,分两种情况:有大小恰好合适的空闲块和有空闲块能满足需求且有剩余。
//注意函数返回值。
DuLinkList block = (DuLinkList)malloc(sizeof(DuLNode));
memset(block, 0, sizeof(DuLNode));
block->data.ID = ID;
block->data.size = request;
block->data.state = Busy;
while (p)
{
if (p->data.state == Free && p->data.size >= request)
{
if ((p->data.size - request) > 1)
{

block->data.address = p->data.address;
p->data.address = p->data.address + request;
p->data.size = p->data.size - request;


p->prior->next = block;
block->next = p;
block->prior = p->prior;
p->prior = block;
return OK;
}
else
{
p->data.ID = ID;
p->data.state = Busy;
free(block);
return OK;
}
}
p = p->next;
}
free(block);
return ERROR;
}
//--------------------  最佳适应算法  ------------------------
Status Best_fit(int ID, int request)
{
//请在此处添加为作业申请新空间且初始化的代码
DuLinkList block = (DuLinkList)malloc(sizeof(DuLNode));
memset(block, 0, sizeof(DuLNode));
block->data.ID = ID;
block->data.size = request;
block->data.state = Busy;
DuLNode *p = block_first->next;
DuLNode *q = NULL; //记录最佳插入位置
int i = 0;
int num = 0;
DuLNode *q1 = NULL;

while (p)
{

if (p->data.state == Free && p->data.size >= request)
{
if (num == 0)
{
q = p;
i = q->data.size - request;


}
else if (p->data.size - request < i)
{
q = p;
i = q->data.size - request;
}
num++;

}


p = p->next;
}


//请在此处完成最佳适应算法的代码,重点:要查找到最小剩余空间的分区,即最佳插入位置


if (q == NULL) return ERROR;//没有找到空闲块
else
{
//请插入找到了最佳位置并实现内存分配的代码!
if ((q->data.size - request) > 1)
{


block->data.address = q->data.address;
q->data.address = q->data.address + request;
q->data.size = q->data.size - request;


block->next = q;
block->prior = q->prior;
q->prior->next = block;
q->prior = block;
return OK;
}
else
{
q->data.ID = ID;
q->data.state = Busy;
free(block);
return OK;
}
}
}


//-----------------------   主 存 回 收   --------------------
Status free(int ID)
{
DuLNode *p = block_first->next;
DuLNode *p1 = NULL;
while (p)
{
if (p->data.ID == ID)
{
p->data.state = Free;
p->data.ID = Free;
cout << "内存块找到,准备回收!" << endl;
if (p->next == NULL){
if ((p->prior->data.state == Free) && (p->prior->data.address + p->prior->data.size == p->data.address))
{
p->prior->data.size += p->data.size;
p->prior->next = NULL;
free(p);
}
cout << "内存块为最后一块!" << endl;
break;
}
//请在此处添加其他情况的回收的代码,主要包括要回收的分区与前面的空闲块相连或与后面的空闲块相连,或者与前后空闲块相连等。
   if ((p->next->next == NULL) && (p->next->data.state == Free) && (p->data.address + p->data.size == p->next->data.address))
{
p->data.size += p->next->data.size;
free(p->next);
p->next = NULL;
if ((p->prior->data.state == Free) && (p->prior->data.address + p->prior->data.size == p->data.address))
{
p->prior->data.size += p->data.size;
p->prior->next = NULL;
free(p);  


}
break;


}
else if ((p->prior->data.state == Free)&&(p->prior->data.address+p->prior->data.size == p->data.address))
{

if ( p->next->data.state == Free && (p->data.address + p->data.size == p->next->data.address))
{
p1 = p->next;
p->data.size += p->next->data.size;
p->next->next->prior = p;


p->next = p->next->next;
free(p1);

}
p->prior->data.size += p->data.size;
p->prior->next = p->next;
p->next->prior = p->prior;
free(p);
break;
}
else if ((p->next->data.state == Free) && (p->data.address + p->data.size == p->next->data.address))
{
p1 = p->next;
p->data.size += p->next->data.size;
p->next = p->next->next;
p->next->prior = p;
free(p1);
break;
}
break;
}
p = p->next;
}
cout << "回收成功!" << endl;
return OK;
}


//---------------  显示主存分配情况 ------------------
void show()
{
cout << "+++++++++++++++++++++++++++++++++++++++\n";
cout << "+++        主 存 分 配 情 况        +++\n";
cout << "+++++++++++++++++++++++++++++++++++++++\n";
DuLNode *p = block_first->next;
while (p)
{
cout << "分 区 号:";
if (p->data.ID == Free) cout << "Free" << endl;
else cout << p->data.ID << endl;
cout << "起始地址:" << p->data.address << endl;
cout << "分区大小:" << p->data.size << " KB" << endl;
cout << "状    态:";
if (p->data.state == Free) cout << "空  闲" << endl;
else cout << "已分配" << endl;
cout << "——————————————" << endl;
p = p->next;
}
}


//----------------------- 主  函  数---------------------------
void main()
{
int ch;//算法选择标记
cout << "       动态分区分配方式的模拟       \n";
cout << "************************************\n";
cout << "** 1)首次适应算法  2)最佳适应算法 **\n";
cout << "************************************\n";
cout << "请选择分配算法:";
cin >> ch;
Initblock(); //开创空间表
int choice;  //操作选择标记
while (1)
{
cout << "********************************************\n";
cout << "**    1: 分配内存        2: 回收内存      **\n";
cout << "**    3: 查看分配        0: 退    出      **\n";
cout << "********************************************\n";
cout << "请输入您的操作 :";
cin >> choice;
if (choice == 1) alloc(ch); // 分配内存
else if (choice == 2)  // 内存回收
{
int ID;
cout << "请输入您要释放的分区号:";
cin >> ID;
free(ID);
}
else if (choice == 3) show();//显示主存
else if (choice == 0) break; //退出
else //输入操作有误
{
cout << "输入有误,请重试!" << endl;
continue;
}
}
}

这篇关于系统内存分配的首次适应算法和最佳适应算法链表模拟实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053720

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter