Python政府短期或长期债务李嘉图等价模型状态矩阵

本文主要是介绍Python政府短期或长期债务李嘉图等价模型状态矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯居民消费,财政用途:🖊贴现未来单期公用事业 | 🖊无风险单期贷款毛利率 | 🎯完全和不完全市场中居民消费:🖊计算完全市场、不完全市场中消费和债务发展趋势 | 🖊有限状态马尔可夫模拟费用收入 | 🎯完全和不完全市场税收:🖊有限状态马尔可夫模拟完全市场,政府单期支出和累积回报 | 🖊马尔可夫模拟:和平时期政府预算,战争时期政府预算 | 🖊马尔可夫跳跃于和平期和战争期,模拟政府预算 | 🎯马尔可夫跳跃过程:🖊计算单期收益 | 🖊李嘉图-巴罗效应模型(也称为李嘉图等价):计算政府税收和借贷 | 🎯最优财政政策规划:🖊拉姆齐定价规划税率、税收收入、政府债务的动态 | 🎯全球化两国创新周期轨迹模拟。

🎯资产价格:Python和MATLAB及C++资产价格看涨看跌对冲模型和微积分

🎯风险获利:Python流动性做市风险获利 | 信息不对称买卖数学模型

🎯市场流动性:Python | C++ | MATLAB | Julia | R 市场流动性数学预先评估量

🎯市场机制:Python牛市熊市横盘机制 | 缺口分析 | 头寸调整算法

🎯金融数学:C++和Python计算金融数学方程算法模型

🍇Python宏观经济学矩估计

矩估计就是模拟模型数据 S S S次,并使用模拟数据中矩的平均值作为模型矩的估计量。令 x ~ = { x ~ 1 , x ~ 2 , … x ~ s , … x ~ S } \tilde{x}=\left\{\tilde{x}_1, \tilde{x}_2, \ldots \tilde{x}_s, \ldots \tilde{x}_S\right\} x~={x~1,x~2,x~s,x~S} 为模型数据的 S S S​ 模拟。
m ^ ( x ~ ∣ θ ) = 1 S ∑ s = 1 S m ( x ~ s ∣ θ ) \hat{m}(\tilde{x} \mid \theta)=\frac{1}{S} \sum_{s=1}^S m\left(\tilde{x}_s \mid \theta\right) m^(x~θ)=S1s=1Sm(x~sθ)
一旦我们从 S S S 模拟中估计出模型矩 m ^ ( x ~ ∣ θ ) \hat{m}(\tilde{x} \mid \theta) m^(x~θ),矩估计就与我们对广义矩法的介绍非常相似。估计参数向量 θ ^ S M M \hat{\theta}_{S M M} θ^SMM 的矩估计法是选择 θ \theta θ 来最小化数据矩 m ( x ) m(x) m(x) 与模拟模型矩的距离度量 m ^ ( x ~ ∣ θ ) \hat{m}(\tilde{x} \mid \theta) m^(x~θ)
θ ^ S M M = θ : min ⁡ θ ∣ ∣ m ^ ( x ~ ∣ θ ) − m ( x ) ∣ ∣ \hat{\theta}_{S M M}=\theta: \quad \min _\theta|| \hat{m}(\tilde{x} \mid \theta)-m(x)|| θ^SMM=θ:θmin∣∣m^(x~θ)m(x)∣∣
在此,矩估计量如下:
θ ^ S M M = θ : min ⁡ θ e ( x ~ , x ∣ θ ) T W e ( x ~ , x ∣ θ ) \hat{\theta}_{S M M}=\theta: \quad \min _\theta e(\tilde{x}, x \mid \theta)^T W e(\tilde{x}, x \mid \theta) θ^SMM=θ:θmine(x~,xθ)TWe(x~,xθ)
其中 W W W 是准则函数中的 R × R R \times R R×R 权重矩阵。现在,将此加权矩阵视为单位矩阵。我们将二次形式表达式 e ( x ~ , x ∣ θ ) T W e ( x ~ , x ∣ θ ) e(\tilde{x}, x \mid \theta)^T W e(\tilde{x}, x \mid \theta) e(x~,xθ)TWe(x~,xθ) 称为准则函数,因为它是严格正标量,即矩估计问题陈述中最小化的对象。准则函数中的 R × R R \times R R×R 加权矩阵 W W W 允许计量经济学家控制最小化问题中每个时刻的加权方式。例如, W W W R × R R \times R R×R 单位矩阵将为每个时刻赋予相等的权重,而标准函数将是偏差百分比(误差)的简单平方和。其他加权策略可以由问题或模型的性质决定。

矩估计需要强调的最后一项是,为模型的 S S S 模拟绘制的误差必须仅绘制一次,以便最小化问题 θ ^ S M M \hat{ \theta}_{S M M} θ^SMM 不会因 θ \theta θ 值的每次猜测而改变底层采样。更简单地说,您希望所有模拟的随机抽取保持不变,以便最小化问题中唯一改变的是参数向量 θ \theta θ 的值。

💦正态分布拟合到中等宏观经济学测试分数

数据位于文本文件 tpts.txt 中。回想一下,这些测试分数在 0 到 450 之间。下图显示了数据的直方图,以及三个截断的正常概率密度函数。黑线是截断的正态概率密度函数的 μ \mu μ σ \sigma σ 的机器学习估计。红线和绿线只是截断法线参数 μ \mu μ σ \sigma σ 的两个“任意”选择的组合的概率密度函数。

import requests
from IPython.display import Imageurl = ('https://raw.githubusercontent.com/Notebooks/' +'master/DMM/images/Mplots.png')
image_file = requests.get(url, allow_redirects=True)
open('Mplots.png', 'wb').write(image_file.content)
Image("Mplots.png")

让我们尝试根据矩估计的截断正态分布来估计参数 μ \mu μ σ \sigma σ​。我们应该利用哪些时刻?让我们尝试一下数据的均值和方差。这两个数据统计定义为:
mean  ( scores ⁡ i ) = 1 N ∑ i = 1 N scores ⁡ i var ⁡ ( scores ⁡ i ) = 1 N − 1 ∑ i = 1 N ( scores ⁡ i − mean ⁡ ( scores ⁡ i ) ) 2 \begin{gathered} \text { mean }\left(\operatorname{scores}_i\right)=\frac{1}{N} \sum_{i=1}^N \operatorname{scores}_i \\ \operatorname{var}\left(\operatorname{scores}_i\right)=\frac{1}{N-1} \sum_{i=1}^N\left(\operatorname{scores}_i-\operatorname{mean}\left(\operatorname{scores}_i\right)\right)^2 \end{gathered}  mean (scoresi)=N1i=1Nscoresivar(scoresi)=N11i=1N(scoresimean(scoresi))2
因此,矩估计的数据矩向量 m ( x ) m(x) m(x) 如下
m ( scores ⁡ i ) ≡ [ mean ⁡ ( scores ⁡ i ) var ⁡ ( scores ⁡ i ) ] m\left(\operatorname{scores}_i\right) \equiv\left[\begin{array}{c} \operatorname{mean}\left(\operatorname{scores}_i\right) \\ \operatorname{var}\left(\operatorname{scores}_i\right) \end{array}\right] m(scoresi)[mean(scoresi)var(scoresi)]
测试分数的一次模拟(某次模拟)会是什么样子?数据文件 tpts.txt 中有 161 个测试分数观测值。因此,一次模拟(某次模拟)将是从参数 μ 、 σ \mu、\sigma μσ 和截断值 = 450 =450 =450 的截断正态分布中抽取 161 个测试分数。

import numpy as np
import numpy.random as rnd
import numpy.linalg as lin
import scipy.stats as sts
import scipy.integrate as intgr
import scipy.optimize as opt
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
cmap1 = matplotlib.cm.get_cmap('summer')%matplotlib notebook
url = ('https://raw.githubusercontent.com/Notebooks/' +'master/DMM/data/tpts.txt')
data_file = requests.get(url, allow_redirects=True)
open('tpts.txt', 'wb').write(data_file.content)pts = np.loadtxt('tpts.txt')

令随机变量 y ∼ N ( μ , σ ) y \sim N(\mu, \sigma) yN(μ,σ) 服从均值 μ \mu μ 和标准差 σ \sigma σ 的正态分布,PDF 为 ϕ ( y ∣ μ , σ ) \phi(y \mid \mu, \sigma) ϕ(yμ,σ)和 CDF 由 Φ ( y ∣ μ , σ ) \Phi(y \mid \mu, \sigma) Φ(yμ,σ) 给出。随机变量 x ∈ ( a , b ) x \in(a, b) x(a,b) 的截断正态分布基于 y y y,但截止值为 a ≥ − ∞ a \geq-\infty a 作为下限, a < b ≤ ∞ a<b \leq \infty a<b 为上限具有以下概率密度函数。
f ( x ∣ μ , σ , a , b ) = { 0 if  x ≤ a ϕ ( x ∣ μ , σ ) Φ ( b ∣ μ , σ ) − Φ ( a ∣ μ , σ ) 0 if  x ≥ b if  a < x < b f(x \mid \mu, \sigma, a, b)=\left\{\begin{array}{l} 0 \text { if } \quad x \leq a \\ \frac{\phi(x \mid \mu, \sigma)}{\Phi(b \mid \mu, \sigma)-\Phi(a \mid \mu, \sigma)} \\ 0 \quad \text { if } \quad x \geq b \end{array} \quad \text { if } a<x<b\right. f(xμ,σ,a,b)= 0 if xaΦ(bμ,σ)Φ(aμ,σ)ϕ(xμ,σ)0 if xb if a<x<b
截断法线的累计密度函数可以表示为:
F ( x ∣ μ , σ , a , b ) = { 0 if  x ≤ a Φ ( x ∣ μ , σ ) − Φ ( a ∣ μ , σ ) Φ ( b ∣ μ , σ ) − Φ ( a ∣ μ , σ ) 0 if  x ≥ b if  a < x < b F(x \mid \mu, \sigma, a, b)=\left\{\begin{array}{l} 0 \quad \text { if } \quad x \leq a \\ \frac{\Phi(x \mid \mu, \sigma)-\Phi(a \mid \mu, \sigma)}{\Phi(b \mid \mu, \sigma)-\Phi(a \mid \mu, \sigma)} \\ 0 \quad \text { if } \quad x \geq b \end{array} \quad \text { if } a<x<b\right. F(xμ,σ,a,b)= 0 if xaΦ(bμ,σ)Φ(aμ,σ)Φ(xμ,σ)Φ(aμ,σ)0 if xb if a<x<b
请注意, z z z 只是 p p p 的变换,使得 z ∼ U ( Φ − 1 ( a ∣ μ , σ ) , Φ − 1 ( b ∣ μ , σ ) ) z \sim U\left(\Phi^{-1}(a \mid \mu, \sigma), \Phi^{-1}(b \mid \mu, \sigma)\right) zU(Φ1(aμ,σ),Φ1(bμ,σ))​。

定义函数,根据截断正态分布给出概率密度函数值

def trunc_norm_pdf(xvals, mu, sigma, cut_lb, cut_ub):if (cut_lb == None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)elif (cut_lb == None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)pdf_vals = (sts.norm.pdf(xvals, loc=mu, scale=sigma) /(cut_ub_cdf - cut_lb_cdf))return pdf_vals

定义从截断的结果中提取 N x S 测试分数值的函数

def trunc_norm_draws(unif_vals, mu, sigma, cut_lb, cut_ub):if (cut_lb == None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub == None):cut_ub_cdf = 1.0cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)elif (cut_lb == None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = 0.0elif (cut_lb != None) & (cut_ub != None):cut_ub_cdf = sts.norm.cdf(cut_ub, loc=mu, scale=sigma)cut_lb_cdf = sts.norm.cdf(cut_lb, loc=mu, scale=sigma)unif2_vals = unif_vals * (cut_ub_cdf - cut_lb_cdf) + cut_lb_cdftnorm_draws = sts.norm.ppf(unif2_vals, loc=mu, scale=sigma)return tnorm_draws

从平均值 μ = 300 , σ = 30 \mu=300, \sigma=30 μ=300,σ=30 的截断正态分布中模拟 161 个测试分数会是什么样子?

mu_1 = 300.0
sig_1 = 30.0
cut_lb_1 = 0.0
cut_ub_1 = 450.0
unif_vals_1 = sts.uniform.rvs(0, 1, size=161)
draws_1 = trunc_norm_draws(unif_vals_1, mu_1, sig_1,cut_lb_1, cut_ub_1)
print('Mean score =', draws_1.mean())
print('Variance of scores =', draws_1.var())
print('Standard deviation of scores =', draws_1.std())count_d, bins_d, ignored_d = \plt.hist(pts, 30, density=True, color='b', edgecolor='black',linewidth=0.8, label='Data')
count_m, bins_m, ignored_m = \plt.hist(draws_1, 30, density=True, color='r', edgecolor='black',linewidth=0.8, label='Simulated data')
xvals = np.linspace(0, 450, 500)
plt.plot(xvals, trunc_norm_pdf(xvals, mu_1, sig_1, cut_lb_1, cut_ub_1),linewidth=2, color='k', label='PDF')
plt.title('Econ 381 scores: 2011-2012', fontsize=20)
plt.xlabel('Total points')
plt.ylabel('Percent of scores')
plt.xlim([0, 550])  
plt.legend(loc='upper left')

通过该模拟,我们可以根据模拟数据计算矩,就像根据实际数据计算矩一样。

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python政府短期或长期债务李嘉图等价模型状态矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053472

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指