2024/06/11--代码随想录算法1/17|理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯

本文主要是介绍2024/06/11--代码随想录算法1/17|理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论基础

在这里插入图片描述

动态规划:当前状态由前面的状态推导而来
贪心:局部选最优

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

力扣链接
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:dp[i]是F(i)
  2. 确定递推公式,dp[i] = dp[i-1]+dp[i-2] i>1
  3. dp数组如何初始化 dp[0]=0 dp[1]=1
  4. 确定遍历顺序【从前往后】
  5. 举例推导dp数组

【动态规划】

时间复杂度:O(n) ,空间复杂度:O(n)
class Solution:def fib(self, n: int) -> int:if n == 0: return 0  #否则dp[1]就有问题dp = [0] * (n+1)dp[0] = 0dp[1] = 1for n in range(2,n+1):dp[n] = dp[n-1] + dp[n-2]return dp[n]	
#只用维护两个数值 ,时间复杂度:O(n) ,空间复杂度:O(1)
class Solution:def fib(self, n: int) -> int:if n <= 1 : return nprev1, prev2 = 0, 1for _ in range(2, n+1):cur = prev1 + prev2prev1, prev2 = prev2, curreturn prev2

【递归法】时间复杂度:O(2^n) ,空间复杂度:O(n)

class Solution:def fib(self, n: int) -> int:if n<2: return nreturn self.fib(n-1)+self.fib(n-2)

70. 爬楼梯

力扣链接
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义: dp[i]:爬到第i个楼梯,有dp[i]种办法
  2. 确定递推公式,dp[i] = dp[i-1]+dp[i-2] i>1
  3. dp数组如何初始化 dp[1]=1 dp[2]=2
  4. 确定遍历顺序【从前往后】
  5. 举例推导dp数组
# 空间复杂度为O(n)版本
class Solution:def climbStairs(self, n: int) -> int:if n <= 1:return ndp = [0] * (n + 1)dp[1] = 1dp[2] = 2for i in range(3, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]
# 空间复杂度为O(1)版本
class Solution:def climbStairs(self, n: int) -> int:if n<3: return nprev1, prev2 = 1, 2for i in range(3,n+1):cur = prev1 + prev2prev1, prev2 = prev2, curreturn prev2

746. 使用最小花费爬楼梯

力扣链接
在这里插入图片描述

动态规划5步曲

  1. 确定dp数组(dp table)以及下标的含义:
    cost[i] :第 i 个阶梯对应着一个非负数的体力花费值;dp[i]:到达第i台阶所花费的最少体力
  2. 确定递推公式,dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]) i>2
  3. dp数组如何初始化 dp[1]=cost[0] dp[2]=2
  4. 确定遍历顺序【从前往后】
  5. 举例推导dp数组

这篇关于2024/06/11--代码随想录算法1/17|理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1053185

相关文章

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

MySQL 衍生表(Derived Tables)的使用

《MySQL衍生表(DerivedTables)的使用》本文主要介绍了MySQL衍生表(DerivedTables)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录一、衍生表简介1.1 衍生表基本用法1.2 自定义列名1.3 衍生表的局限在SQL的查询语句select

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

MySQL分区表的具体使用

《MySQL分区表的具体使用》MySQL分区表通过规则将数据分至不同物理存储,提升管理与查询效率,本文主要介绍了MySQL分区表的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、分区的类型1. Range partition(范围分区)2. List partition(列表分区)3. H

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏