【因果推断python】28_面板数据和固定效应2

2024-06-12 01:12

本文主要是介绍【因果推断python】28_面板数据和固定效应2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

固定效应


固定效应

为了方面后面更正式地讲述,让我们首先看一下我们拥有的数据。按照我们的例子,我们将尝试估计婚姻对收入的影响。我们的数据包含多年以来多个个体 (nr) 的这两个变量,married 和lwage。请注意,工资采用对数形式。除此之外,我们还有其他控制措施,例如当年的工作小时数、受教育年限等。

from linearmodels.datasets import wage_panel
data = wage_panel.load()
data.head()

通常,固定效应模型定义为

y_{it}=\beta X_{it}+\gamma U_i+e_{it}

其中 y_{it}是个体 i 在时间 t 的结果,X_{it} 是个体变量的向量i 在时间 t。 U_i 是单个 i 的一组不可观测值。请注意,这些不可观测值随着时间的推移是不变的,因此缺少时间下标。最后,e_{it} 是错误项。对于教育示例,y_{it} 是对数工资,X_{it} 是随时间变化的可观察变量,例如婚姻和经验,U_i是每个人没有观察到但不变的变量,例如美丽和智力。

现在,请记住我说过使用具有固定效果模型的面板数据就像为实体添加虚拟对象一样简单。这是真的,但在实践中,我们实际上并没有这样做。想象一个我们有 100 万客户的数据集。如果我们为它们中的每一个添加一个 dummy,我们最终会得到 100 万列,这可能不是一个好主意。相反,我们使用将线性回归划分为 2 个独立模型的技巧。我们以前见过这个,但现在是回顾它的好时机。假设您有一个线性回归模型,其中包含一组特征 X_1 和另一组特征 X_2

\hat{Y}=\hat{\beta_{1}}X_{1}+\hat{\beta_{2}}X_{2}

其中 X_1 和 X_2 是特征矩阵(每个特征一行,每个观察一列)和 \hat{\beta_{1}} 和 \hat{\beta_{2}} 是行向量。您可以通过执行获得完全相同的 \hat{\beta_{1}} 参数

  1. 在第二组特征 \hat{y^*}=\hat{\gamma_1}X_2 上回归结果 y
  2. 在第二个 \hat{X_1}=\hat{\gamma_2}X_2 上回归第一组特征
  3. 得到残差 \tilde{X}_1=X_1-\hat{X}_1 和 \tilde{y}_1=y_1-\hat{y^*}
  4. 将结果的残差回归到特征残差 \hat{y}=\hat{\beta_1}\tilde{X_1}

最后一次回归的参数将与使用所有特征运行回归完全相同。但这究竟对我们有什么帮助呢?好吧,我们可以将带有实体假人的模型的估计分解为 2。首先,我们使用假人来预测结果和特征。这些是上面的步骤 1 和 2。

现在,还记得在虚拟变量上运行回归是如何像估计该虚拟变量的平均值一样简单吗?如果你不这样做,让我们用我们的数据来证明这是真的。让我们运行一个模型,我们将工资预测为虚拟年份的函数。

mod = smf.ols("lwage ~ C(year)", data=data).fit()
mod.summary().tables[1]

请注意该模型如何预测 1980 年的平均收入为 1.3935,1981 年的平均收入为 1.5129 (1.3935+0.1194) 等等。 现在,如果我们按年份计算平均值,我们会得到完全相同的结果。 (请记住,基准年 1980 是截距。因此,您必须将截距添加到其他年份的参数中才能获得该年的平均lwage)。

data.groupby("year")["lwage"].mean()

这意味着,如果我们得到面板中每个人的平均值,我们基本上是在对其他变量进行个体虚拟回归。这激发了以下估计过程:

  1. 通过减去个人的平均值来创建时间贬损变量: $\ddot{Y}{it} = Y{it} - \bar{Y}i\ddot{X}{it} = X_{it} - \bar{X}_i$

  2. \ddot{X}{it}上回归上回归\ddot{Y}{it}

请注意,当我们这样做时,未观察到的 U_{i} 消失了。由于 U_{i} 在时间上是恒定的,所以我们有 \bar{U}_i=U_i。如果我们有以下两个方程组

Y_{it} = \beta X_{it} + \gamma U_i + e_{it} \\\bar{Y}{i} = \beta \bar{X}{it} + \gamma \bar{U}i + \bar{e}{it}

我们从另一个中减去一个,我们得到

(Y_{it} - \bar{Y}{i}) = (\beta X{it} - \beta \bar{X}{it}) + (\gamma U_i - \gamma U_i) + ( e{it}-\bar{e}{it}) \\ (Y{it} - \bar{Y}{i}) = \beta(X{it} - \bar{X}{it}) + (e{it}-\bar{e}{it}) \\ \ddot{Y}{it} = \beta \ddot{X}{it} + \ddot{e}{it}

它消除了所有未观察到的随时间不变的事物。老实说,不仅未观察到的变量消失了。这发生在所有时间不变的变量上。因此,您不能包含任何随时间保持不变的变量,因为它们将是虚拟变量的线性组合,并且模型不会运行。

要检查哪些变量是这些变量,我们可以按个体对数据进行分组并获得标准差的总和。如果它为零,则意味着对于任何个人来说,变量都不会随时间变化。

data.groupby("nr").std().sum()
year            1334.971910
black              0.000000
exper           1334.971910
hisp               0.000000
hours         203098.215649
married          140.372801
educ               0.000000
union            106.512445
lwage            173.929670
expersq        17608.242825
occupation       739.222281
dtype: float64

对于我们的数据,我们需要删除实体假人,blackhisp,因为它们对于个人来说是恒定的。 此外,我们需要取消教育。 我们也不会使用职业,因为这可能会调节婚姻对工资的影响(可能是单身男性能够承担更多时间要求更高的职位)。 选择了我们将使用的功能后,是时候估计这个模型了。

要运行我们的固定效应模型,首先,让我们获取平均数据。 我们可以通过按个人对所有内容进行分组并取平均值来实现这一点。

Y = "lwage"
T = "married"
X = [T, "expersq", "union", "hours"]mean_data = data.groupby("nr")[X+[Y]].mean()
mean_data.head()

为了将数据围绕均值标准化(demean),我们需要将原始数据的索引设置为个体标识符,nr。 然后,我们可以简单地从一个数据集中减去对应的数据均值的数据集。

demeaned_data = (data.set_index("nr") # set the index as the person indicator[X+[Y]]- mean_data) # subtract the mean datademeaned_data.head()

mod = smf.ols(f"{Y} ~ {'+'.join(X)}", data=demeaned_data).fit()
mod.summary().tables[1]

如果我们相信固定效应消除了所有遗漏的变量偏差,那么这个模型告诉我们婚姻使男人的工资增加了 11%。 这个结果非常显着。 这里的一个细节是,对于固定效应模型,需要对标准误差进行聚类。 因此,我们可以使用库 linearmodels 并将参数 cluster_entity 设置为 True,而不是手动进行所有估计(这只是出于教学原因)。

from linearmodels.panel import PanelOLS
mod = PanelOLS.from_formula("lwage ~ expersq+union+married+hours+EntityEffects",data=data.set_index(["nr", "year"]))result = mod.fit(cov_type='clustered', cluster_entity=True)
result.summary.tables[1]

mod = smf.ols("lwage ~ expersq+union+married+hours+black+hisp+educ", data=data).fit()
mod.summary().tables[1]

这个模型是说婚姻使男人的工资增加了 14%。 比我们在固定效应模型中发现的效应要大一些。 这表明由于固定的个体因素(如智力和美貌)没有被添加到模型中,结果存在一些省略变量偏差。

这篇关于【因果推断python】28_面板数据和固定效应2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052780

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1