【因果推断python】28_面板数据和固定效应2

2024-06-12 01:12

本文主要是介绍【因果推断python】28_面板数据和固定效应2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

固定效应


固定效应

为了方面后面更正式地讲述,让我们首先看一下我们拥有的数据。按照我们的例子,我们将尝试估计婚姻对收入的影响。我们的数据包含多年以来多个个体 (nr) 的这两个变量,married 和lwage。请注意,工资采用对数形式。除此之外,我们还有其他控制措施,例如当年的工作小时数、受教育年限等。

from linearmodels.datasets import wage_panel
data = wage_panel.load()
data.head()

通常,固定效应模型定义为

y_{it}=\beta X_{it}+\gamma U_i+e_{it}

其中 y_{it}是个体 i 在时间 t 的结果,X_{it} 是个体变量的向量i 在时间 t。 U_i 是单个 i 的一组不可观测值。请注意,这些不可观测值随着时间的推移是不变的,因此缺少时间下标。最后,e_{it} 是错误项。对于教育示例,y_{it} 是对数工资,X_{it} 是随时间变化的可观察变量,例如婚姻和经验,U_i是每个人没有观察到但不变的变量,例如美丽和智力。

现在,请记住我说过使用具有固定效果模型的面板数据就像为实体添加虚拟对象一样简单。这是真的,但在实践中,我们实际上并没有这样做。想象一个我们有 100 万客户的数据集。如果我们为它们中的每一个添加一个 dummy,我们最终会得到 100 万列,这可能不是一个好主意。相反,我们使用将线性回归划分为 2 个独立模型的技巧。我们以前见过这个,但现在是回顾它的好时机。假设您有一个线性回归模型,其中包含一组特征 X_1 和另一组特征 X_2

\hat{Y}=\hat{\beta_{1}}X_{1}+\hat{\beta_{2}}X_{2}

其中 X_1 和 X_2 是特征矩阵(每个特征一行,每个观察一列)和 \hat{\beta_{1}} 和 \hat{\beta_{2}} 是行向量。您可以通过执行获得完全相同的 \hat{\beta_{1}} 参数

  1. 在第二组特征 \hat{y^*}=\hat{\gamma_1}X_2 上回归结果 y
  2. 在第二个 \hat{X_1}=\hat{\gamma_2}X_2 上回归第一组特征
  3. 得到残差 \tilde{X}_1=X_1-\hat{X}_1 和 \tilde{y}_1=y_1-\hat{y^*}
  4. 将结果的残差回归到特征残差 \hat{y}=\hat{\beta_1}\tilde{X_1}

最后一次回归的参数将与使用所有特征运行回归完全相同。但这究竟对我们有什么帮助呢?好吧,我们可以将带有实体假人的模型的估计分解为 2。首先,我们使用假人来预测结果和特征。这些是上面的步骤 1 和 2。

现在,还记得在虚拟变量上运行回归是如何像估计该虚拟变量的平均值一样简单吗?如果你不这样做,让我们用我们的数据来证明这是真的。让我们运行一个模型,我们将工资预测为虚拟年份的函数。

mod = smf.ols("lwage ~ C(year)", data=data).fit()
mod.summary().tables[1]

请注意该模型如何预测 1980 年的平均收入为 1.3935,1981 年的平均收入为 1.5129 (1.3935+0.1194) 等等。 现在,如果我们按年份计算平均值,我们会得到完全相同的结果。 (请记住,基准年 1980 是截距。因此,您必须将截距添加到其他年份的参数中才能获得该年的平均lwage)。

data.groupby("year")["lwage"].mean()

这意味着,如果我们得到面板中每个人的平均值,我们基本上是在对其他变量进行个体虚拟回归。这激发了以下估计过程:

  1. 通过减去个人的平均值来创建时间贬损变量: $\ddot{Y}{it} = Y{it} - \bar{Y}i\ddot{X}{it} = X_{it} - \bar{X}_i$

  2. \ddot{X}{it}上回归上回归\ddot{Y}{it}

请注意,当我们这样做时,未观察到的 U_{i} 消失了。由于 U_{i} 在时间上是恒定的,所以我们有 \bar{U}_i=U_i。如果我们有以下两个方程组

Y_{it} = \beta X_{it} + \gamma U_i + e_{it} \\\bar{Y}{i} = \beta \bar{X}{it} + \gamma \bar{U}i + \bar{e}{it}

我们从另一个中减去一个,我们得到

(Y_{it} - \bar{Y}{i}) = (\beta X{it} - \beta \bar{X}{it}) + (\gamma U_i - \gamma U_i) + ( e{it}-\bar{e}{it}) \\ (Y{it} - \bar{Y}{i}) = \beta(X{it} - \bar{X}{it}) + (e{it}-\bar{e}{it}) \\ \ddot{Y}{it} = \beta \ddot{X}{it} + \ddot{e}{it}

它消除了所有未观察到的随时间不变的事物。老实说,不仅未观察到的变量消失了。这发生在所有时间不变的变量上。因此,您不能包含任何随时间保持不变的变量,因为它们将是虚拟变量的线性组合,并且模型不会运行。

要检查哪些变量是这些变量,我们可以按个体对数据进行分组并获得标准差的总和。如果它为零,则意味着对于任何个人来说,变量都不会随时间变化。

data.groupby("nr").std().sum()
year            1334.971910
black              0.000000
exper           1334.971910
hisp               0.000000
hours         203098.215649
married          140.372801
educ               0.000000
union            106.512445
lwage            173.929670
expersq        17608.242825
occupation       739.222281
dtype: float64

对于我们的数据,我们需要删除实体假人,blackhisp,因为它们对于个人来说是恒定的。 此外,我们需要取消教育。 我们也不会使用职业,因为这可能会调节婚姻对工资的影响(可能是单身男性能够承担更多时间要求更高的职位)。 选择了我们将使用的功能后,是时候估计这个模型了。

要运行我们的固定效应模型,首先,让我们获取平均数据。 我们可以通过按个人对所有内容进行分组并取平均值来实现这一点。

Y = "lwage"
T = "married"
X = [T, "expersq", "union", "hours"]mean_data = data.groupby("nr")[X+[Y]].mean()
mean_data.head()

为了将数据围绕均值标准化(demean),我们需要将原始数据的索引设置为个体标识符,nr。 然后,我们可以简单地从一个数据集中减去对应的数据均值的数据集。

demeaned_data = (data.set_index("nr") # set the index as the person indicator[X+[Y]]- mean_data) # subtract the mean datademeaned_data.head()

mod = smf.ols(f"{Y} ~ {'+'.join(X)}", data=demeaned_data).fit()
mod.summary().tables[1]

如果我们相信固定效应消除了所有遗漏的变量偏差,那么这个模型告诉我们婚姻使男人的工资增加了 11%。 这个结果非常显着。 这里的一个细节是,对于固定效应模型,需要对标准误差进行聚类。 因此,我们可以使用库 linearmodels 并将参数 cluster_entity 设置为 True,而不是手动进行所有估计(这只是出于教学原因)。

from linearmodels.panel import PanelOLS
mod = PanelOLS.from_formula("lwage ~ expersq+union+married+hours+EntityEffects",data=data.set_index(["nr", "year"]))result = mod.fit(cov_type='clustered', cluster_entity=True)
result.summary.tables[1]

mod = smf.ols("lwage ~ expersq+union+married+hours+black+hisp+educ", data=data).fit()
mod.summary().tables[1]

这个模型是说婚姻使男人的工资增加了 14%。 比我们在固定效应模型中发现的效应要大一些。 这表明由于固定的个体因素(如智力和美貌)没有被添加到模型中,结果存在一些省略变量偏差。

这篇关于【因果推断python】28_面板数据和固定效应2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052780

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: