OpenCV 图像清晰度评价算法(相机自动对焦)

2024-06-11 21:38

本文主要是介绍OpenCV 图像清晰度评价算法(相机自动对焦),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上。这时候物体的成像比较清晰,图像细节信息丰富。

相机自动对焦的过程,其实就是对成像清晰度评价的过程,对焦不准确,拍摄出来的图像清晰度低,视觉效果模糊,如果是在工业检测测量领域,对焦不准导致的后果可能是致命的;对焦准确的图像清晰度较高,层次鲜明,对比度高。

图像清晰度评价算法有很多种,在空域中,主要思路是考察图像的领域对比度,即相邻像素间的灰度特征的梯度差;在频域中,主要思路是考察图像的频率分量,对焦清晰的图像高频分量较多,对焦模糊的图像低频分量较多。

这里实现3种清晰度评价方法,分别是Tenengrad梯度方法、Laplacian梯度方法和方差方法。

Tenengrad梯度方法


Tenengrad梯度方法利用Sobel算子分别计算水平和垂直方向的梯度,同一场景下梯度值越高,图像越清晰。以下是具体实现,这里衡量的指标是经过Sobel算子处理后的图像的平均灰度值,值越大,代表图像越清晰。


#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>
 
using namespace std;
using namespace cv;
 
int main()
{
    Mat imageSource = imread("2.jpg");
    Mat imageGrey;
 
    cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
    Mat imageSobel;
    Sobel(imageGrey, imageSobel, CV_16U, 1, 1);
 
    //图像的平均灰度
    double meanValue = 0.0;
    meanValue = mean(imageSobel)[0];
 
    //double to string
    stringstream meanValueStream;
    string meanValueString;
    meanValueStream << meanValue;
    meanValueStream >> meanValueString;
    meanValueString = "Articulation(Sobel Method): " + meanValueString;
    putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);
    imshow("Articulation", imageSource);
    waitKey();
}


使用三张测试图片模拟不同对焦。第一张最清晰,得分最高,第二三张越来越模糊,得分依次降低。

 

Laplacian梯度方法:


Laplacian梯度是另一种求图像梯度的方法,在上例的OpenCV代码中直接替换Sobel算子即可。


#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>
 
using namespace std;
using namespace cv;
 
int main()
{
    Mat imageSource = imread("1.jpg");
    Mat imageGrey;
 
    cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
    Mat imageSobel;
 
    Laplacian(imageGrey, imageSobel, CV_16U);
    //Sobel(imageGrey, imageSobel, CV_16U, 1, 1);
 
    //图像的平均灰度
    double meanValue = 0.0;
    meanValue = mean(imageSobel)[0];
 
    //double to string
    stringstream meanValueStream;
    string meanValueString;
    meanValueStream << meanValue;
    meanValueStream >> meanValueString;
    meanValueString = "Articulation(Laplacian Method): " + meanValueString;
    putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);
    imshow("Articulation", imageSource);
    waitKey();
}


用同样的三张测试图片测试,结果一致,随着对焦模糊得分降低:

方差方法:


方差是概率论中用来考察一组离散数据和其期望(即数据的均值)之间的离散(偏离)成都的度量方法。方差较大,表示这一组数据之间的偏差就较大,组内的数据有的较大,有的较小,分布不均衡;方差较小,表示这一组数据之间的偏差较小,组内的数据之间分布平均,大小相近。

对焦清晰的图像相比对焦模糊的图像,它的数据之间的灰度差异应该更大,即它的方差应该较大,可以通过图像灰度数据的方差来衡量图像的清晰度,方差越大,表示清晰度越好。


#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>
 
using namespace std;
using namespace cv;
 
int main()
{
    Mat imageSource = imread("2.jpg");
    Mat imageGrey;
 
    cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
    Mat meanValueImage;
    Mat meanStdValueImage;
 
    //求灰度图像的标准差
    meanStdDev(imageGrey, meanValueImage, meanStdValueImage);
    double meanValue = 0.0;
    meanValue = meanStdValueImage.at<double>(0, 0);
 
    //double to string
    stringstream meanValueStream;
    string meanValueString;
    meanValueStream << meanValue*meanValue;
    meanValueStream >> meanValueString;
    meanValueString = "Articulation(Variance Method): " + meanValueString;
 
    putText(imageSource, meanValueString, Point(20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar(255, 255, 25), 2);
    imshow("Articulation", imageSource);
    waitKey();
}


方差数值随着清晰度的降低逐渐降低:

在工业应用中,最清晰的对焦拍摄出来的图像不一定是最好的,有可能出现摩尔纹(水波纹)现象,一般需要在最清晰对焦位置附件做一个微调。
 

这篇关于OpenCV 图像清晰度评价算法(相机自动对焦)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052345

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

linux部署NFS和autofs自动挂载实现过程

《linux部署NFS和autofs自动挂载实现过程》文章介绍了NFS(网络文件系统)和Autofs的原理与配置,NFS通过RPC实现跨系统文件共享,需配置/etc/exports和nfs.conf,... 目录(一)NFS1. 什么是NFS2.NFS守护进程3.RPC服务4. 原理5. 部署5.1安装NF

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、