如何用R语言ggplot2画高水平期刊散点图

2024-06-11 17:36

本文主要是介绍如何用R语言ggplot2画高水平期刊散点图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、数据集
  • 二、ggplot2画图
    • 1、全部代码
    • 2、细节拆分
      • 1)导包
      • 2)创建图形对象
      • 3)主题设置
      • 4)轴设置
      • 5)图例设置
      • 6)散点颜色
      • 7)保存图片


前言

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


一、数据集

数据下载链接见文章顶部

处理前的数据:

在这里插入图片描述

library(readxl)
library(reshape2) # reshape2 包是 R 语言中的一个数据处理包,主要用于数据重塑(reshaping),提供了代码所需的 melt 函数。data = read_excel("fig1_datasets.xlsx", sheet = "Sheet1")
data_melt = melt(data, id.vars = c("date"), variable.name = "fruit", value.name = "production")
data_melt = data_melt[data_melt$production != 0,]
data_melt$size = log(data_melt$production) # 构造 size 列用于表示散点大小,log 函数用于减少最大点和最小点的大小差异。

处理后的数据:
在这里插入图片描述


二、ggplot2画图

1、全部代码

library(ggplot2)
library(scales)pic =ggplot(data_melt, aes(x = date, y = production, color = fruit, size = size)) +geom_point() +# 主题设置theme_bw() + theme(panel.grid.major = element_line(linetype = 5)) +# 轴设置xlab("") +ylab("Production") +theme(axis.text = element_text(size = 19)) + theme(axis.title = element_text(size = 22)) +scale_x_datetime(breaks = breaks_pretty(n = 8))+scale_y_log10(breaks = breaks_log(n = 10)) +# 图例设置guides(size = 'none') +guides(color = guide_legend(override.aes = list(size = 6))) +theme(legend.title = element_blank()) +theme(legend.text = element_text(size = 14, face = "italic")) +theme(legend.position = c(0.073, 0.765)) +theme(legend.background = element_rect(fill = NA, colour = NA)) +# 散点颜色scale_color_manual(values = c('#3ba272', '#91cc75', '#ea7ccc', '#9a60b4', '#ee6666', '#73c0de', '#fac858', '#5470C6'))jpeg(filename = "test1.png", width = 7000, height = 3000, res = 600, quality = 100)
pic
dev.off()

2、细节拆分

1)导包

library(ggplot2)
library(scales)

ggplot2 中已经提供一些 scale 相关函数用于调整绘图中各种变量的比例尺。然而,还有一个独立的 R 包叫做 scales ,它提供了更多关于比例尺的函数和工具。本案例代码中的 breaks_pretty 函数由其提供。

2)创建图形对象

pic =ggplot(data_melt, aes(x = date, y = production, color = fruit, size = size)) +geom_point()
  • 设置 x 轴为日期,y 轴为产量,按 fruit 列的水果类型着色,散点大小为 size 列。
  • geom_point 指定画散点图。

3)主题设置

theme_bw() + 
theme(panel.grid.major = element_line(linetype = 5))
  • theme_bw 指定黑白主题。
  • 设置主网格线(坐标轴上的刻度位置对应的网格线为主网格线)为5号线段类型。

4)轴设置

xlab("") +
ylab("Production") +
theme(axis.text = element_text(size = 19)) + 
theme(axis.title = element_text(size = 22)) +
scale_x_datetime(breaks = breaks_pretty(n = 8))+
scale_y_log10(breaks = breaks_log(n = 10))
  • xlab 设置 x 轴标题,ylab 设置 y 轴标题。
  • 设置轴刻度字号19,轴标题字号22。
  • scale_x_datetime()函数用于调整 x 轴上日期时间型变量的比例尺,其中breaks参数用于指定刻度的位置。
    在这个特定的例子中,breaks_pretty(n = 8)是一个函数调用,它会生成相对于输入数据的合适的刻度位置。参数 n 指定了希望返回的刻度数量。
    因此,scale_x_datetime(breaks = breaks_pretty(n = 8)) 的作用是设置 x 轴上日期时间型变量的刻度位置为相对于数据合适的 8 个刻度位置。这样做可以确保刻度位置不会过于拥挤或稀疏,使得图形更易读。
  • scale_y_log10() 函数用于对 y 轴上的连续型变量进行对数变换,并且 breaks 参数用于指定刻度的位置。
    在这个特定的例子中,breaks_log(n = 10) 是一个函数调用,参数 n 指定了希望返回的刻度数量。scale_y_log10(breaks = breaks_log(n = 10)) 的作用是将 y 轴原本的均匀刻度改为对数刻度,并且使其返回的刻度数量为 10。这样做可以确保对数刻度的刻度位置合适,并且数量适当,以便更好地展示数据。

5)图例设置

guides(size = 'none') +
guides(color = guide_legend(override.aes = list(size = 6))) +
theme(legend.title = element_blank()) +
theme(legend.text = element_text(size = 14, face = "italic")) +
theme(legend.position = c(0.073, 0.765)) +
theme(legend.background = element_rect(fill = NA, colour = NA)) 
  • guides(size = ‘none’) 删除了 size 图例。这里的参数 size 指的是大小美学映射,而不是列名里的 “size”。
  • guides(color = guide_legend(override.aes = list(size = 6))) 将图例中的散点大小设为6。
  • 设置图例标题为空。
  • 设置图例字体为14号斜体。
  • 设置图例位置(x, y)为(0.073, 0.765)。
  • 设置图例背景填充颜色、边框颜色为无,防止遮挡散点。

6)散点颜色

scale_color_manual(values = c('#3ba272', '#91cc75', '#ea7ccc', '#9a60b4', '#ee6666', '#73c0de', '#fac858', '#5470C6'))

7)保存图片

jpeg(filename = "test1.png", width = 7000, height = 3000, res = 600, quality = 100)
pic
dev.off()
  • jpeg 函数打开了一个JPEG设备,设定了图片的保存路径为 “test1.png”,图片的宽度为7000像素,高度为3000像素,分辨率为600 dpi,图片质量为100%。
  • pic是之前生成的图形对象。
  • dev.off()关闭了之前打开的图形设备,保存了图片到指定路径。这是在完成图片保存后必须执行的步骤,以确保保存的图片被正确地输出。

这篇关于如何用R语言ggplot2画高水平期刊散点图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051837

相关文章

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示