[deeplearning-015]一文理解rnn

2024-06-11 09:18

本文主要是介绍[deeplearning-015]一文理解rnn,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.参考文档 https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/

  前提,熟悉bp算法推导,熟悉bptt算法推导

2.py源码

#!/usr/bin/env python3#参考文献 https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/import copy, numpy as npnp.random.seed(0)# compute sigmoid nonlinearity
def sigmoid(x):output = 1 / (1 + np.exp(-x))return output# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):return output * (1 - output)# training dataset generation
int2binary = {}#空字典
binary_dim = 8#=256
largest_number = pow(2, binary_dim)binary = np.unpackbits(np.array([range(largest_number)], dtype=np.uint8).T, axis = 1)
for i in range(largest_number):int2binary[i] = binary[i]# input variables
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1# initialize neural network weights
synapse_0 = 2 * np.random.random((input_dim, hidden_dim)) - 1 #把值调整到(-1,1)
synapse_1 = 2 * np.random.random((hidden_dim, output_dim)) - 1
synapse_h = 2 * np.random.random((hidden_dim, hidden_dim)) - 1
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)# 随机生成ab两个整数,c=a+b。将abc转成二进制,a和b的二进制是rnn的输入,c的二进制是目标值,训练rnn。# training logic
for j in range(50000):# generate a simple addition problem (a + b = c)a_int = np.random.randint(largest_number / 2)  # int versiona = int2binary[a_int]  # binary encodingb_int = np.random.randint(largest_number / 2)  # int versionb = int2binary[b_int]  # binary encoding# true answerc_int = a_int + b_intc = int2binary[c_int]# print(a_int, a, b_int, b,c_int,c)# exit(1)# where we'll store our best guess (binary encoded)d = np.zeros_like(c)overallError = 0#记录第二层的deta值layer_2_deltas = list()#记录第一层的输出值layer_1_values = list()layer_1_values.append(np.zeros(hidden_dim))# moving along the positions in the binary encodingfor position in range(binary_dim):# generate input and output# 从abc三个数的二进制的最低位开始,每次取一位,生成训练样本# print("\nposition=", position)# print("a=",a)# print("b=",b)# print("c=", c)#比如,取第一位的时候,X=[[1,0]],y=[[1]],是训练样本和目标值X = np.array([[a[binary_dim - position - 1], b[binary_dim - position - 1]]])y = np.array([[c[binary_dim - position - 1]]]).T# print('X=',X)# print('y=',y)# hidden layer (input ~+ prev_hidden)# 计算第一层的输出值:sigmoid里面有两个部分,分别是input*synapse_0和前次第一层输出值*synapse_h隐层layer_1 = sigmoid(np.dot(X, synapse_0) + np.dot(layer_1_values[-1], synapse_h))# output layer (new binary representation)#第二层输出就很直接了layer_2 = sigmoid(np.dot(layer_1, synapse_1))# did we miss?... if so, by how much?# 计算输出误差layer_2_error = y - layer_2#根据误差,计算第二层权重系数的deta,这个公式是对第二层微分求导得到的,熟悉BP算法的都清楚,不在叙述layer_2_deltas.append((layer_2_error) * sigmoid_output_to_derivative(layer_2))#计算绝对误差之和,以衡量8个位的总误差大小overallError += np.abs(layer_2_error[0])# decode estimate so we can print it out# 记录下 rnn对当前位的预测值d[binary_dim - position - 1] = np.round(layer_2[0][0])# store hidden layer so we can use it in the next timestep# 把本轮第一层的输出记录到layer_1_values,以备bptt使用。layer_1_values.append(copy.deepcopy(layer_1))#计算第一个隐层的deltafuture_layer_1_delta = np.zeros(hidden_dim)for position in range(binary_dim):#注意喽,X这一轮循环是从ab的二进制的高位开始往低位走的X = np.array([[a[position], b[position]]])#高位二进制是后计算的,因此其值在layer_1的尾部layer_1 = layer_1_values[-position - 1]prev_layer_1 = layer_1_values[-position - 2]# error at output layerlayer_2_delta = layer_2_deltas[-position - 1]# error at hidden layerlayer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)# let's update all our weights so we can try againsynapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)synapse_0_update += X.T.dot(layer_1_delta)future_layer_1_delta = layer_1_deltasynapse_0 += synapse_0_update * alphasynapse_1 += synapse_1_update * alphasynapse_h += synapse_h_update * alphasynapse_0_update *= 0synapse_1_update *= 0synapse_h_update *= 0# print out progressif (j % 1000 == 0):print("Error:" + str(overallError))print("Pred:" + str(d))print("True:" + str(c))out = 0for index, x in enumerate(reversed(d)):out += x * pow(2, index)print(str(a_int) + " + " + str(b_int) + " = " + str(out))print("------------")

 

这篇关于[deeplearning-015]一文理解rnn的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050761

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

一文全面详解Python变量作用域

《一文全面详解Python变量作用域》变量作用域是Python中非常重要的概念,它决定了在哪里可以访问变量,下面我将用通俗易懂的方式,结合代码示例和图表,带你全面了解Python变量作用域,需要的朋友... 目录一、什么是变量作用域?二、python的四种作用域作用域查找顺序图示三、各作用域详解1. 局部作

一文彻底搞懂Java 中的 SPI 是什么

《一文彻底搞懂Java中的SPI是什么》:本文主要介绍Java中的SPI是什么,本篇文章将通过经典题目、实战解析和面试官视角,帮助你从容应对“SPI”相关问题,赢得技术面试的加分项,需要的朋... 目录一、面试主题概述二、高频面试题汇总三、重点题目详解✅ 面试题1:Java 的 SPI 是什么?如何实现一个

一文详解PostgreSQL复制参数

《一文详解PostgreSQL复制参数》PostgreSQL作为一款功能强大的开源关系型数据库,其复制功能对于构建高可用性系统至关重要,本文给大家详细介绍了PostgreSQL的复制参数,需要的朋友可... 目录一、复制参数基础概念二、核心复制参数深度解析1. max_wal_seChina编程nders:WAL

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

一文详解如何在Vue3中封装API请求

《一文详解如何在Vue3中封装API请求》在现代前端开发中,API请求是不可避免的一部分,尤其是与后端交互时,下面我们来看看如何在Vue3项目中封装API请求,让你在实现功能时更加高效吧... 目录为什么要封装API请求1. vue 3项目结构2. 安装axIOS3. 创建API封装模块4. 封装API请求

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

一文带你搞懂Redis Stream的6种消息处理模式

《一文带你搞懂RedisStream的6种消息处理模式》Redis5.0版本引入的Stream数据类型,为Redis生态带来了强大而灵活的消息队列功能,本文将为大家详细介绍RedisStream的6... 目录1. 简单消费模式(Simple Consumption)基本概念核心命令实现示例使用场景优缺点2