腾讯云大数据ES Serverless

2024-06-11 07:20
文章标签 数据 es 腾讯 serverless

本文主要是介绍腾讯云大数据ES Serverless,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Elasticsearch:日志和搜索场景首选解决方案。

技术特点:分布式、全文搜索和数据分析引擎,可以对海量数据进行准实时存储、搜索和统计分析。

ES的技术栈一共包含四个组件: 

其中最核心的是Elasticsearch,可用于数据的存储与检索。

在数据采集层面,我们可以使用Beats组件,采集之后通过Logstash进行加工,然后存储到Elasticsearch中,最后我们可以在Kibana中进行数据的可视化与分析。除了开源属性外,ES也支持商业特性X-Pack,包含安全、机器学习等能力。

传统ES集群模式的挑战

首先是集群运维,对于ES,我们需要自行完成配置调优、重启跟升级,在流量突增时需要进行集群扩缩容以应对业务压力。而节点或者磁盘不均或者过载时,都会对集群的稳定性造成极大影响,故障的排查等繁琐、复杂。其次是数据接入。我们通过集群模式进行数据接入,需要自行搭建数据链路。配置Beats、Kafka、Logstash等组件。组件的部署、运维管理以及全链路的故障排查等,面临着极大的挑战,运维与管理成本高。最后是索引管理,索引的Setting、Mapping以及别名等配置需要有较多的经验支撑。同时随着业务的不断增长,分片数量的动态调优以及滚动、降冷、删除等,都需要我们自行介入。例如当流量突增时,我们需要调大分片数量以应对高并发的写入,避免出现写入拒绝。当流量下来时我们则可以适当的降低分片数量,避免元数据管理压力过大。

        而以上的调整,均需要我们自行处理。整体而言,传统ES集群模式下,学习成本、人力投入以及时间投入都比较高。

ES Serverless服务的设计理念与设计思路

        让算力像自来水一样按需使用,一直是各大云厂商最求的目标。

        在云计算的发展初期,侧重的是能够快速地平滑迁移上云,例如把IDC的资源换成云服务以及云硬盘。而现在客户的需求已经从上好云转变为用好云,即在释放运维与管理成本的同时,能够更加聚焦于业务,实现降本增效。ES Serverless服务在设计开发过程中,始终坚持以下几个目标:

 一是索引即服务、无集群的概念,可按需创建与使用索引。

二是按需使用、按量付费,即按照实际使用的计算与存储资源去按量计费。

三是不止索引,还是场景化的一站式服务,能针对每个场景提供相应的开箱即用的能力,提升整体的使用效率。

一站式日志分析体验

在使用时,用户仅需关注数据源以及检索分析等业务逻辑即可。中间的流量调度、链路调度以及资源调度全部由ES Serverless服务完成。不需要关注底层的数据链路、消息队列、集群运维以及索引配置等。平台端会提供端到端的一个SLA保障。

那除了支持原生的ES API写入方式之外,我们在控制台已经支持了云服务器CVM,容器服务TKE、EMR、云数据仓库TCHouse-C等云产品的一站式日志分析与采集,同时也支持通过Logstash、Flink以及Kafka等将数据投递到ES Serverless服务的索引中。

那从产品能力上来看,已经打通了云服务器CVM、容器服务TKE以及大数据产品。在索引管理方面,我们提供了配置管理、指标监控、用户管理及告警能力,可方便我们快速完成数据应用。而在检索分析能力方面,除了支持原生的Kibana能力之外,无需外链访问即可快速进行检索分析。

这篇关于腾讯云大数据ES Serverless的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050506

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创