通用信息提取数据预处理

2024-06-11 01:12

本文主要是介绍通用信息提取数据预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

train_data='./datasets/duuie'
output_folder='./datasets/duuie_pre'
ignore_datasets=["DUEE", "DUEE_FIN_LITE"]
schema_folder='./datasets/seen_schema'

# 对CCKS2022 竞赛数据进行预处理
import shutil

# shutil.copytree(train_data,output_folder)

import os

life_folder = os.path.join(output_folder, "DUIE_LIFE_SPO")
org_folder = os.path.join(output_folder, "DUIE_ORG_SPO")

print(life_folder,org_folder)

import json

def load_jsonlines_file(filename):
    return [json.loads(line) for line in open(filename, encoding="utf8")]

life_train_instances = load_jsonlines_file(f"{life_folder}/train.json")
org_train_instances = load_jsonlines_file(f"{org_folder}/train.json")

for i in range(27695,27698):
    print(life_train_instances[i],'|',org_train_instances[i])

class RecordSchema:
    def __init__(self, type_list, role_list, type_role_dict):
        self.type_list = type_list
        self.role_list = role_list
        self.type_role_dict = type_role_dict
    def __repr__(self) -> str:
        repr_list = [f"Type: {self.type_list}\n", f"Role: {self.role_list}\n", f"Map: {self.type_role_dict}"]
        return "\n".join(repr_list)
    @staticmethod
    def get_empty_schema():
        return RecordSchema(type_list=list(), role_list=list(), type_role_dict=dict())
    @staticmethod
    def read_from_file(filename):
        lines = open(filename, encoding="utf8").readlines()
        type_list = json.loads(lines[0])# 类型
        role_list = json.loads(lines[1]) # 角色
        type_role_dict = json.loads(lines[2])#类型-角色
        return RecordSchema(type_list, role_list, type_role_dict)
    def write_to_file(self, filename):
        with open(filename, "w", encoding="utf8") as output:
            # 用于将Python对象编码(序列化)为JSON格式的字符串。设置ensure_ascii=False参数
            # 会告诉json.dumps()函数不要转义非ASCII字符
            output.write(json.dumps(self.type_list, ensure_ascii=False) + "\n")
            output.write(json.dumps(self.role_list, ensure_ascii=False) + "\n")
            output.write(json.dumps(self.type_role_dict, ensure_ascii=False) + "\n")

RecordSchema.read_from_file(f"{life_folder}/record.schema")

life_relation = RecordSchema.read_from_file(f"{life_folder}/record.schema").role_list

org_relation = RecordSchema.read_from_file(f"{org_folder}/record.schema").role_list

from collections import defaultdict

instance_dict = defaultdict(list)

for instance in life_train_instances + org_train_instances:
    instance_dict[instance["text"]] += [instance]

a=[i for i in life_train_instances for j in org_train_instances if i['text']==j['text']]

b=[i for i in org_train_instances for j in a if i['text']==j['text']]

for i in range(3):
    print(a[i]['relation'],'|',b[i]['relation'])

dict_1={1:2,3:4}
for i in dict_1:#相当于字典的keys()
    print(i)

from typing import Tuple, List, Dict

def merge_instance(instance_list):
    def all_equal(_x):#判断是否全相同
        for __x in _x:
            if __x != _x[0]:
                return False
        return True
    def entity_key(_x):
        return (tuple(_x["offset"]), _x["type"])
    def relation_key(_x):
        return (
            tuple(_x["type"]),
            tuple(_x["args"][0]["offset"]),
            _x["args"][0]["type"],
            tuple(_x["args"][1]["offset"]),
            _x["args"][1]["type"],
        )

    def event_key(_x):
        return (tuple(_x["offset"]), _x["type"])
    assert all_equal([x["text"] for x in instance_list])
    element_dict = {
        "entity": dict(),
        "relation": dict(),
        "event": dict(),
    }
    instance_id_list = list()
    for x in instance_list:
        instance_id_list += [x["id"]]
        for entity in x.get("entity", list()):
            element_dict["entity"][entity_key(entity)] = entity
        for relation in x.get("relation", list()):
            element_dict["relation"][relation_key(relation)] = relation
        for event in x.get("event", list()):
            element_dict["event"][event_key(event)] = event

    return {
        "id": "-".join(instance_id_list),
        "text": instance_list[0]["text"],
        "tokens": instance_list[0]["tokens"],
        "entity": list(element_dict["entity"].values()),
        "relation": list(element_dict["relation"].values()),
        "event": list(element_dict["event"].values()),
    }

 for text in instance_dict:
    instance_dict[text] = merge_instance(instance_dict[text])

for i in range(800,802):
    print(list(instance_dict.values())[i]['relation'])

import copy

with open(f"{life_folder}/train.json", "w") as output:
    for instance in instance_dict.values():
        new_instance = copy.deepcopy(instance)
        new_instance["relation"] = list(filter(lambda x: x["type"] in life_relation, instance["relation"]))
        output.write(json.dumps(new_instance) + "\n")

 with open(f"{org_folder}/train.json", "w") as output:
    for instance in instance_dict.values():
        new_instance = copy.deepcopy(instance)
        new_instance["relation"] = list(filter(lambda x: x["type"] in org_relation, instance["relation"]))
        output.write(json.dumps(new_instance) + "\n")

a_instances = load_jsonlines_file(f"{life_folder}/train.json")
b_instances = load_jsonlines_file(f"{org_folder}/train.json")

print(len(a_instances),len(b_instances))

import yaml

def load_definition_schema_file(filename):
    return yaml.load(open(filename, encoding="utf8"), Loader=yaml.FullLoader)

aa = load_definition_schema_file(os.path.join(schema_folder,'体育竞赛.yaml'))

mm=list()
for i in aa['事件'].values():
    mm+=i["参数"]   
mm=list(set(mm))

[x for x in aa['事件']]

aa['事件']['退役']["参数"].keys()

aaa={1:2,3:4}
for k,v in aaa.items():
    print(k,v)

def dump_schema(output_folder, schema_dict):
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)
    for schema_name, schema in schema_dict.items():
        schema_file = f"{output_folder}/{schema_name}.schema"
        with open(schema_file, "w", encoding="utf8") as output:
            for element in schema:
                output.write(json.dumps(element, ensure_ascii=False) + "\n")

def dump_event_schema(event_map, output_folder):
    role_list = list()
    for roles in event_map.values():
        role_list += roles["参数"]
    rols_list = list(set(role_list))
    type_list = list(event_map.keys())
    type_role_map = {event_type: list(event_map[event_type]["参数"].keys()) for event_type in event_map}
    dump_schema(
        output_folder=output_folder,
        schema_dict={
            "entity": [[], [], {}],
            "relation": [[], [], {}],
            "event": [type_list, rols_list, type_role_map],
            "record": [type_list, rols_list, type_role_map],
        },
    )

def filter_event_in_instance(instances,required_event_types):
    """Filter events in the instance, keep event mentions with `required_event_types`
    过滤实例中的事件,只保留需要的事件类别的事件标注
    """
    new_instances = list()
    for instance in instances:
        new_instance = copy.deepcopy(instance)
        new_instance["event"] = list(filter(lambda x: x["type"] in required_event_types, new_instance["event"]))
        new_instances += [new_instance]
    return new_instances

def dump_instances(instances, output_filename):
    with open(output_filename, "w", encoding="utf8") as output:
        for instance in instances:
            output.write(json.dumps(instance, ensure_ascii=False) + "\n")

def filter_event(data_folder, event_types, output_folder):
    """Keep event with `event_types` in `data_folder` save to `output_folder`
    过滤 `data_folder` 中的事件,只保留 `event_types` 类型事件保存到 `output_folder`"""
    dump_event_schema(event_types, output_folder)
    for split in ["train", "val"]:
        filename = os.path.join(data_folder, f"{split}.json")
        instances = [json.loads(line.strip()) for line in open(filename, encoding="utf8")]
        new_instances = filter_event_in_instance(instances, required_event_types=event_types)
        dump_instances(new_instances, os.path.join(output_folder, f"{split}.json"))

# 对事件数据进行预处理,过滤除 `灾害意外` 和 `体育竞赛` 外的事件标注
for schema in ["灾害意外", "体育竞赛"]:
    print(f"Building {schema} dataset ...")
    duee_folder = os.path.join(output_folder, "DUEE")
    schema_file = os.path.join(schema_folder, f"{schema}.yaml")
    output_folder2 = os.path.join(output_folder, schema)
    schema = load_definition_schema_file(schema_file)
    filter_event(
        duee_folder,
        schema["事件"],
        output_folder2,
    )

ty_instances = load_jsonlines_file(f"{output_folder}/体育竞赛/train.json")
zh_instances = load_jsonlines_file(f"{output_folder}/灾害意外/train.json")

print(len(ty_instances),len(zh_instances))

for i in range(11508,11608):
    print(ty_instances[i],'|',zh_instances[i])

bb=load_definition_schema_file(os.path.join(schema_folder, "金融信息.yaml"))

for i in bb['事件'].keys():
    print(i)

mm=list()
mm+=bb['事件']['中标']["参数"]   
mm=list(set(mm))

bb["事件"]['中标']["参数"] .keys()

for schema in ["金融信息"]:
    print(f"Building {schema} dataset ...")
    duee_fin_folder = os.path.join(output_folder, "DUEE_FIN_LITE")
    schema_file = os.path.join(schema_folder, f"{schema}.yaml")
    output_folder2 = os.path.join(output_folder, schema)
    schema = load_definition_schema_file(schema_file)
    # 依据不同事件类别将多事件抽取分割成多个单事件类型抽取
    # Separate multi-type extraction to multiple single-type extraction
    for event_type in schema["事件"]:
        filter_event(
           duee_fin_folder,
           {event_type: schema["事件"][event_type]},
            output_folder2 + "_" + event_type,
        )

vv=load_jsonlines_file(f"{output_folder}/DUEE_FIN_LITE/train.json")

zb_instances = load_jsonlines_file(f"{output_folder}/金融信息_中标/train.json")
zy_instances = load_jsonlines_file(f"{output_folder}/金融信息_质押/train.json")

print(len(zb_instances),len(zy_instances))

for i in range(6985,7015):
    print(zb_instances[i],'|',zy_instances[i])

def annonote_graph(
    entities: List[Dict] = [],
    relations: List[Dict] = [],
    events: List[Dict] = []):
    spot_dict = dict()
    asoc_dict = defaultdict(list)
    # 将实体关系事件转换为点关联图
    def add_spot(spot):
        spot_key = (tuple(spot["offset"]), spot["type"])
        spot_dict[spot_key] = spot
    def add_asoc(spot, asoc, tail):
        spot_key = (tuple(spot["offset"]), spot["type"])
        asoc_dict[spot_key] += [(tuple(tail["offset"]), tail["text"], asoc)]
    for entity in entities:
        add_spot(spot=entity)
    for relation in relations:
        add_spot(spot=relation["args"][0])
        add_asoc(spot=relation["args"][0], asoc=relation["type"], tail=relation["args"][1])
    for event in events:
        add_spot(spot=event)
        for argument in event["args"]:
            add_asoc(spot=event, asoc=argument["type"], tail=argument)
    spot_asoc_instance = list()
    for spot_key in sorted(spot_dict.keys()):
        offset, label = spot_key
        if len(spot_dict[spot_key]["offset"]) == 0:
            continue
        spot_instance = {
            "span": spot_dict[spot_key]["text"],
            "label": label,
            "asoc": list(),
        }
        for tail_offset, tail_text, asoc in sorted(asoc_dict.get(spot_key, [])):
            if len(tail_offset) == 0:
                continue
            spot_instance["asoc"] += [(asoc, tail_text)]
        spot_asoc_instance += [spot_instance]
    spot_labels = set([label for _, label in spot_dict.keys()])
    asoc_labels = set()
    for _, asoc_list in asoc_dict.items():
        for _, _, asoc in asoc_list:
            asoc_labels.add(asoc)
    return spot_labels, asoc_labels, spot_asoc_instance

def add_spot_asoc_to_single_file(filename):
    instances = [json.loads(line) for line in open(filename, encoding="utf8")]
    print(f"Add spot asoc to {filename} ...")
    with open(filename, "w", encoding="utf8") as output:
        for instance in instances:
            spots, asocs, spot_asoc_instance = annonote_graph(
                entities=instance["entity"],#实体
                relations=instance["relation"],#关系
                events=instance["event"],#事件
            )
            # 为对象添加spot_asoc
            instance["spot_asoc"] = spot_asoc_instance
            # 为对象添加spot
            instance["spot"] = list(spots)
            # 为对象添加asoc
            instance["asoc"] = list(asocs)
            output.write(json.dumps(instance, ensure_ascii=False) + "\n")

ff = os.path.join(output_folder,'金融信息_企业破产',"train.json")

ff_instances = [json.loads(line) for line in open(ff, encoding="utf8")]

for i in range(1046,1050):
    print(ff_instances[i])

a,b,yyj=annonote_graph( entities=ff_instances[11000]["entity"],
                relations=ff_instances[11000]["relation"],
                events=ff_instances[11000]["event"],)

data_folder=output_folder

def merge_schema(schema_list: List[RecordSchema]):
    type_set = set()
    role_set = set()
    type_role_dict = defaultdict(list)
    for schema in schema_list:
        for type_name in schema.type_list:
            type_set.add(type_name)
        for role_name in schema.role_list:
            role_set.add(role_name)
        for type_name in schema.type_role_dict:
            type_role_dict[type_name] += schema.type_role_dict[type_name]
    for type_name in type_role_dict:
        type_role_dict[type_name] = list(set(type_role_dict[type_name]))
    return RecordSchema(
        type_list=list(type_set),
        role_list=list(role_set),
        type_role_dict=type_role_dict,
    )

def convert_duuie_to_spotasoc(data_folder, ignore_datasets):
    schema_list = list()
    for task_folder in os.listdir(data_folder):#过滤无效
        if task_folder in ignore_datasets:
            continue
        if not os.path.isdir(os.path.join(data_folder, task_folder)):#过滤非文件夹
            continue
        print(f"Add spot asoc to {task_folder} ...")
        # 读取单任务的 Schema
        task_schema_file = os.path.join(data_folder, task_folder, "record.schema")
        # 向单任务数据中添加 Spot Asoc 标注
        add_spot_asoc_to_single_file(os.path.join(data_folder, task_folder, "train.json"))
        add_spot_asoc_to_single_file(os.path.join(data_folder, task_folder, "val.json"))
        record_schema = RecordSchema.read_from_file(task_schema_file)
        schema_list += [record_schema]
    # 融合不同任务的 Schema
    multi_schema = merge_schema(schema_list)
    multi_schema.write_to_file(os.path.join(data_folder, "record.schema"))

convert_duuie_to_spotasoc(output_folder,ignore_datasets)

 

 

 

 

 

 

 

这篇关于通用信息提取数据预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049798

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I